Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Emissions analysis for a hydrogen-fueled low-pressure-ratio split-cycle engine

2024-11-05
2024-01-4312
Recuperated low-pressure-ratio split-cycle engines represent a promising engine configuration for applications like transportation and stand-alone power generation by offering a potential efficiency as high as 60%. However, it can be challenging to achieve the stringent NOx emission standard, such as Euro 6 limit of 0.4 gNOx/kWh, due to the exhaust cylinder high intake temperature. This paper presents experimental investigation of hydrogen-air combustion NOx emissions for such engines for the first time. Experiments are carried out using a simplified constant-volume combustion chamber with glow-plug ignition. Two fuel injection techniques are performed: direct injection and injection via a novel convergent-divergent injector. For the direct injection scenario, NOx levels are unsatisfactory with respect to the Euro 6 standards over a range of operating temperatures from 200 °C to 550 °C.
Technical Paper

The effects of enhanced flame diffusion surface on thermal efficiency of small-bore HPD diesel

2024-11-05
2024-01-4280
In the context of energy conservation and emission reduction, high power density(HPD) and low fuel consumption are the consistent pursuit of diesel engine development. Among the small-bore diesel, the limited space in the cylinder poses higher challenges and requirements for the arrangement of sprays.The high injection pressure results in a greater impulse when the spray impinges chamber, which allows the combustibles to develop along the chamber wall. Based on these characteristics of small-bore HPD diesel, a reasonable injection scheme is proposed to help flame diffusion surface increasing and thermal efficiency enhancing. This work proposes an optimization path to increase the flame diffusion surface, then improve thermal efficiency. It can be achieved with matching between the injector extension length and the spray spray angle.
Technical Paper

Quantifying Environmental and Health Impacts of Conventional Diesel and Methane Diesel RCCI Engine Emissions: A Numerical Analysis

2024-11-05
2024-01-4307
A reactivity-controlled compression ignition (RCCI) engine offers ultralow soot and nitrogen oxide (NOx) emission in addition to higher thermal efficiency than diesel or compression ignition (CI) engines. However, the higher emissions of unburned hydrocarbons (HC) and carbon monoxide (CO) from RCCI engines pose a significant challenge that hinders their adoption in the future automotive sector. Additionally, HC includes several hydrocarbons that harm human health and the environment. This study aims to minimize HC and CO formation and emissions by implementing different injection strategies, including adjustments to spray angle configuration, injection timing, and fuel premixing ratio. Additionally, the study examines how different injection strategies affect the spatial and temporal distribution of HC and CO inside the combustion chamber.
Technical Paper

In-Cylinder Sampling Analysis of Soot Precursors During Bio-Derived Lactone Combustion in a Single-Cylinder Diesel Engine

2024-11-05
2024-01-4309
The development of new fuels for internal combustion engines requires further technical support by understanding the pollutant formation mechanism in various phases of combustion so that emissions can be minimized. This research will therefore utilize a bespoke in-cylinder sampling system to analyze the precursors of PAHs and particulates during bio-derived lactone combustion in a single-cylinder diesel engine. The sampling system was composed of a poppet-type in-cylinder sampling valve that displaced one of the engine intake valves and protruded into the combustion chamber beyond the flame quenching layer, and a Gas Chromatography Flame Ionization Detector (GC-FID) that examined the samples. The sampling valve was electromagnetically actuated, and its operation was referenced to the engine crank shaft encoder, allowing the valve to open at any Crank Angle Degree (CAD) within a timing resolution of 0.2 CAD.
Technical Paper

Study of H2 and NH3 mixtures in a gasoline-fueled engine

2024-11-05
2024-01-4288
The combustion of hydrogen (H2) as a fuel is attractive due to its clean combustion or combustion-enhancing properties when used as a supplement to other fuels. However, the challenge of using H2 as a fuel for transportation applications is the difficulty of onboard storage. Cracking onboard stored ammonia (NH3) into H2 can also improve combustion performance and emissions in mobile applications fuelled with zero and carbon-neutral fuels. However, the reforming process is not always 100 % efficient which can lead to the presence of NH3 in the combustion process. The presence of NH3 can influence engine performance, combustion and emissions. Therefore, this experimental study reports the effect of H2 and H2/NH3/N2 fuel blends added to gasoline in a dual-fuel operation under both stoichiometric (λ=1.0) and lean-burn (λ>1.0) operating conditions in a spark ignition (SI) engine.
Technical Paper

Numerical Evaluation of Fuel-Air Mixing in a Direct-Injection Hydrogen Engine using a Multi-Hole Injector

2024-11-05
2024-01-4295
Hydrogen as a chemical energy carrier is considered as one of the most promising options to achieve effective decarbonization of the transportation sector, due to its carbon-free chemical composition. This is particularly true for applications that rely on internal combustion engines (ICEs), although much research is still needed to achieve stable, reliable, and safe operations of the engine. To this purpose, direct injection (DI) of gaseous hydrogen during the compression stroke offers great potential to avoid backfire and largely reduce preignition issues, as opposed to port-fuel injection. Recently, much research has been dedicated, both experimentally and numerically, to understanding the physics and chemistry connected with hydrogen’s mixing and combustion processes in ICEs. This work presents a computational fluid dynamics (CFD) study of the hydrogen DI process in an optical engine operating at relatively low tumble conditions.
Technical Paper

Towards Robust Hydrogen Combustion: Precise Lube Oil Consumption Measurement as an Enabler for Tackling Pre-ignition

2024-11-05
2024-01-4290
The use of carbon-free fuels, such as ammonia or hydrogen, or at least carbon neutral fuels, such as green methane or methanol is one of the most important paths in the development of clean internal combustion engines (ICE). Especially for large, heavy-duty engines, this seems to be the most promising route, as replacing them with battery electric or fuel cell drives poses even greater challenges, at least for the time being. But for some applications or areas of the world, even small ICEs for trucks, passenger cars or off-road vehicles, operated with alternative fuels will still remain the mean of choice. One of the biggest challenges in the development of hydrogen combustion engines is achieving high compression ratios and mean effective pressures due to combustion anomalies, caused by the low ignition delay and broad flammability limit of hydrogen. Oil droplets are considered to be one of the main triggers for pre-ignition and knocking.
Standard

Direct Injection Gasoline Fuel Injector Characterization

2024-09-27
CURRENT
J2713_202409
This SAE Recommended Practice promotes uniformity in the evaluation and qualification tests conducted on gasoline direct injection (GDI) fuel injectors used in gasoline engine applications, where fuel pressures are typically well above 10 MPa. The document scope is limited to electrically actuated gasoline fuel injection devices used in automotive GDI systems and is primarily restricted to bench tests.
Journal Article

An Investigation on Exhaust Pulse Characteristics of Asymmetric Twin-Scroll Turbocharged Heavy-Duty Diesel Engine

2024-07-24
Abstract The shape and energy distribution characteristics of exhaust pulse of an asymmetric twin-scroll turbocharged engine have a significant impact on the matching between asymmetric twin-scroll turbines and engines, as well as the matching between asymmetric twin scrolls and turbine wheels. In this article, the exhaust pulse characteristics of an asymmetric twin-scroll turbocharged engine was studied. Experiments were conducted on a turbine test rig and an engine performance stand to determine the operation rules of exhaust pulse strength, turbine flow parameters, turbine isentropic energy, and turbine efficiency. The results showed that the exhaust pulse strength at the inlets of both the small and large scrolls continuously decreased with the increase of engine speed.
Technical Paper

Benefits of Supercharger Boosting on H2 ICE for Heavy Duty Applications

2024-07-02
2024-01-3006
The fast acceleration of GHG (CO2 in particular) emitted by human activities into the atmosphere is accelerating the average temperature increase of our globe causing heavy climate change. This phenomenon has triggered a strong pressure on GHG emission reduction in all the human activities including the transportation sector which contributes for the 29% to the total emissions in EU [1]. A mitigation to this tendency can come from synthetic fuels: when produced by using clean energy, they can be considered CO2 neutral. H2 is the building block of synthetic fuels and can be used in spark ignited engines where releases the energy accumulated during its production. This solution is particularly attractive for HD applications thanks to the high energy density. H2 can be burned in a quite wide range of λ, but staying on 2,2 the amount of engine out NOx will be low enough for the use on a 13L engine with a relatively simple aftertreatment system.
Technical Paper

Turbocharging System Selection for a Hydrogen-Fuelled Spark-Ignition Internal Combustion Engine for Heavy-Duty Applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favored by its suitable combustion properties and quasi-zero pollutant emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high airflow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims at investigating the required boosting system of a 6-cylinder, 13-litre heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting the limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE Classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known Schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
The commitment to environmentally friendly transportation calls for efficient solutions with the evolution of automotive industry. Turbochargers are an important part of this development. The application of Gas or Air Foil Bearings (GFB) instead of traditional hydrodynamic bearings is recently very noticed, with which the fuel consumption, and emissions can be minimized as well as decreasing the maintenance costs and increasing the reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity.
Technical Paper

Influences of High-Pressure Pump and Injector Nozzle Geometry on Hydraulics Characteristics of a Mechanical Diesel Direct-Injection System

2024-06-04
2024-01-5061
The geometry of high-pressure pump and injector nozzles crucially influences hydraulic behaviors (e.g., the start of injection, the pressure profiles developed in the high-pressure line, needle lift, and injection rates) in diesel engines. These factors, in turn, significantly impact fuel atomization, fuel–air mixing, combustion quality, and the formation of emissions. The main geometry parameters such as plunger diameter and the number and diameter of nozzles lead to the system complexity, requiring careful analysis, design, and calibration. In this study, a high-speed shadowgraph system and a high-resolution pressure recording system were developed to capture the start of injection, spray structure, and pressure profiles in the high-pressure line. Additionally, a model was developed using GT-Fuel package built within the GT-Suite of simulation tools to explore different plunger diameters and numbers and diameters of injector nozzles.
Journal Article

Auto-Ignited Combustion Control in an Engine Equipped with Multiple Boosting Devices

2024-06-03
Abstract The combustion timing of auto-ignited combustion is determined by composition, temperature, and pressure of cylinder charge. Thus, for a successful auto-ignition, those key variables must be controlled within tight target ranges, which is challenging due to (i) nature of coupling between those variables, and (ii) complexity of managing multiple actuators in the engine. In this article, a control strategy that manages multiple actuators of a boosted homogeneous charge compression ignition (HCCI) engine is developed to maintain robust auto-ignited combustion. The HCCI engine being considered is equipped with multiple boosting devices including a supercharger and a turbocharger in addition to conventional actuators and sensors. Since each boosting device has its own pros and cons, harmonizing those boosting devices is crucial for successful transient operation.
Technical Paper

Centrifugal Compressor Map Prediction Based on Geometrical Parameters with Invariant Coefficients

2024-04-24
2024-01-5056
In the present work, a new methodology for predicting the performance of centrifugal compressors is developed. The proposed method differs from existing methods found in literature by gathering principal losses in three parameters: two constants and one variable, which is a function of the compressor wheel geometrical characteristics. As those parameters are constants for a given centrifugal compressor, there is no need for additional corrective parameters in order to obtain coherent results. Indeed, the proposed methodology does not depend on the choice of the slip factor correlation for the prediction of the correct pressure ratio. However, the choice of slip factor influences the efficiency computation. The prediction of the compressor maps for two full stage centrifugal compressors is presented and they show good agreement while compared with manufacturer’s data obtained from gas stand measurements.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Experimental Investigation of Internal and External EGR Effects on a CNG-OME Dual-Fuel Engine

2024-04-09
2024-01-2361
Dual-fuel engines powered by renewable fuels provide a potential solution for reducing the carbon footprint and emissions of transportation, contributing to the goal of achieving sustainable mobility. The investigation presented in the following uses a dual-fuel engine concept running on biogas (referred to as CNG in this paper) and the e-fuel polyoxymethylene dimethyl ether (OME). The current study focuses on the effects of exhaust gas rebreathing and external exhaust gas recirculation (EGR) on emissions and brake thermal efficiency (BTE). A four-cylinder heavy-duty engine converted to dual-fuel operation was used to conduct the engine tests at a load point of 1600 min-1 and 9.8 bar brake mean effective pressure (BMEP). The respective shares of high reactivity fuel (HRF, here: OME) and low reactivity fuel (LRF, here: CNG) were varied, as were the external and internal EGR rates and their combinations.
X