Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Supercharger Boosting on H2 ICE for Heavy Duty applications

2024-07-02
2024-01-3006
Commercial vehicle powertrain is called to respect a challenging roadmap for CO2 emissions reduction, quite complex to achieve just improving technologies currently on the market. In this perspective alternative solutions are gaining interest, and the use of green H2 as fuel for ICE is considered a high potential solution with fast and easy adoption. NOx emission is still a problem for H2 ICE and can be managed operating the engine with lean air fuel ratio all over the engine map. This combustion strategy will challenge the boosting system as lean H2 combustion will require quite higher air flow compared to diesel for the same power density in steady state. Similar problem will show up in transient response particularly when acceleration starts from low load and the exhaust gases enthalpy is very poor and insufficient to spin the turbine. The analysis presented in this paper will show and quantify the positive impact that a supercharger has on both the above mentions problems.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
The commitment to environmentally friendly transportation calls for efficient solutions with the evolution of automotive industry. Turbochargers are an important part of this development. The application of Gas or Air Foil Bearings (GFB) instead of traditional hydrodynamic bearings is recently very noticed, with which the fuel consumption, and emissions can be minimized as well as decreasing the maintenance costs and increasing the reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity.
Technical Paper

Influences of High-Pressure Pump and Injector Nozzle Geometry on Hydraulics Characteristics of a Mechanical Diesel Direct-Injection System

2024-06-04
2024-01-5061
The geometry of high-pressure pump and injector nozzles crucially influences hydraulic behaviors (e.g., the start of injection, the pressure profiles developed in the high-pressure line, needle lift, and injection rates) in diesel engines. These factors, in turn, significantly impact fuel atomization, fuel–air mixing, combustion quality, and the formation of emissions. The main geometry parameters such as plunger diameter and the number and diameter of nozzles lead to the system complexity, requiring careful analysis, design, and calibration. In this study, a high-speed shadowgraph system and a high-resolution pressure recording system were developed to capture the start of injection, spray structure, and pressure profiles in the high-pressure line. Additionally, a model was developed using GT-Fuel package built within the GT-Suite of simulation tools to explore different plunger diameters and numbers and diameters of injector nozzles.
Journal Article

Auto-Ignited Combustion Control in an Engine Equipped with Multiple Boosting Devices

2024-06-03
Abstract The combustion timing of auto-ignited combustion is determined by composition, temperature, and pressure of cylinder charge. Thus, for a successful auto-ignition, those key variables must be controlled within tight target ranges, which is challenging due to (i) nature of coupling between those variables, and (ii) complexity of managing multiple actuators in the engine. In this article, a control strategy that manages multiple actuators of a boosted homogeneous charge compression ignition (HCCI) engine is developed to maintain robust auto-ignited combustion. The HCCI engine being considered is equipped with multiple boosting devices including a supercharger and a turbocharger in addition to conventional actuators and sensors. Since each boosting device has its own pros and cons, harmonizing those boosting devices is crucial for successful transient operation.
Technical Paper

Centrifugal Compressor Map Prediction Based on Geometrical Parameters with Invariant Coefficients

2024-04-24
2024-01-5056
In the present work, a new methodology for predicting the performance of centrifugal compressors is developed. The proposed method differs from existing methods found in literature by gathering principal losses in three parameters: two constants and one variable, which is a function of the compressor wheel geometrical characteristics. As those parameters are constants for a given centrifugal compressor, there is no need for additional corrective parameters in order to obtain coherent results. Indeed, the proposed methodology does not depend on the choice of the slip factor correlation for the prediction of the correct pressure ratio. However, the choice of slip factor influences the efficiency computation. The prediction of the compressor maps for two full stage centrifugal compressors is presented and they show good agreement while compared with manufacturer’s data obtained from gas stand measurements.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Technical Paper

Sea-Level Characterization of Electrically Assisted Turbocharger for Use on Aviation Diesel Engine

2024-03-05
2024-01-1914
Airborne compression-ignition engine operations differ significantly from those in ground vehicles, both in mission requirements and in operating conditions. Unique challenges exist in the aviation space, and electrification technologies originally developed for ground applications may be leveraged to address these considerations. One such technology, electrically assisted turbochargers (EATs), have the potential to address the following: increase the maximum system power output, directly control intake manifold air pressure, and reignite the engine at altitude conditions in the event of an engine flame-out. Sea-level experiments were carried out on a two-liter, four-cylinder compression-ignition engine with a commercial-off-the-shelf EAT that replaced the original turbocharger. The objective of these experiments was to demonstrate the technology, assess the performance, and evaluate control methods at sea level prior to altitude experimentation.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Technical Paper

Model Based Charge Control for 3-Cylinder TGDI Miller Engine Containing Variable Geometry Turbocharger

2024-01-16
2024-26-0043
For ensuring environmental safety, strong emphasis on CO2 pollution reduction is mandated which led to evolution of miller cycle engines. However, the inherent Miller engine characteristic is the lower volumetric efficiency when compared to otto engines because of which small turbo chargers with variable geometry turbines are used to induct air into the engine. With miller engine and VGT turbo charger combination arises the challenges of charge controllability because of lower inertia and reduced vane control area. With conventional turbo charger control methods, the response time is slow thereby leading to turbo lag or severe over boosting, this is overcome by accurate engine modelling and using the same as input for charger control.
Technical Paper

Oil Aerosol Emission Optimization Using Deflectors in Turbo Charger Oil Drain Circuit

2024-01-16
2024-26-0047
Closed crankcase ventilation prevent harmful gases from entering atmosphere thereby reducing hydrocarbon emissions. Ventilation system usually carries blowby gases along with oil mist generated from Engine to Air intake system. Major sources of blowby occurs from leak in combustion chamber through piston rings, leakage from turbocharger shafts & leakage from valve guides. Oil mist carried by these blowby gases gets separated using separation media before passing to Air Intake. Fleece separation media has high separation efficiency with lower pressure loss for oil aerosol particles having size above 10 microns. However, efficiency of fleece media drops drastically if size of aerosol particles are below 10 microns. Aerosol mist of lower particle size (>10 microns) generally forms due to flash boiling on piston under crown area and from shafts of turbo charger due to high speeds combined with elevated temperatures. High power density diesel engine is taken for our study.
Technical Paper

Optimised Air Management System for Heavy Duty Hydrogen Engines

2024-01-16
2024-26-0171
Many Indian cities are amongst the most polluted cities in the world. Transport sector is identified as one of the major contributors to air pollution. Following the global trend, Government of India is also promoting near zero emission fuels with zero CO2 emissions as a way forward to solve the emission problems. With its policies like Green Hydrogen Mission, government of India plans to accelerate the adoption of Hydrogen as a fuel in the country. These initiatives have created a breakthrough in development of Hydrogen ICEs by the Indian OEM’s. Hydrogen ICE have only NOx emissions as the most prominent engine out emissions. NOx emission in Hydrogen engines is very sensitive to operating lambda, where in, after a certain threshold lambda the emissions rise significantly. Therefore, the air management system plays a very important role in the hydrogen engine performance & NOx emissions. This study evaluates various air management system options for a heavy-duty Hydrogen engine.
Technical Paper

GT-Suite Modeling of Thermal Barrier Coatings in a Multi-Cylinder Turbocharged DISI Engine for Catalyst Light-Off Delay Improvement

2023-10-31
2023-01-1602
Catalytic converters, which are commonly used for after-treatment in SI engines, exhibit poor performance at lower temperatures. This is one of the main reasons that tailpipe emissions drastically increase during cold-start periods. Thermal inertia of turbocharger casing prolongs the catalyst warm-up time. Exhaust enthalpy management becomes crucial for a turbocharged direct injection spark ignition (DISI) engine during cold-start periods to quickly heat the catalyst and minimize cold-start emissions. Thermal barrier coatings (TBCs), because of their low thermal inertia, reach higher surface temperatures faster than metal walls, thereby blocking heat transfer and saving enthalpy for the catalyst. The TBCs applied on surfaces that exchange heat with exhaust gases can increase the enthalpy available for the catalyst warm-up.
X