Refine Your Search




Search Results


Engine Flywheel Housing and Mating Transmission Housing Flanges

This SAE Standard specifies the major dimensions and tolerances for Engine Flywheel Housings and the Mating Transmission Housing Flanges. It also locates the crankshaft flange face or the transmission pilot bore (or pilot bearing bore) stop face in relation to housing SAE flange face. This document is not intended to cover the design of the flywheel housing face mating with the engine crankcase rear face or the design of housing walls and ribs. Housing strength analysis and the selection of housing materials are also excluded. This document applies to any internal combustion engine which can utilize SAE No. 6 through SAE No. 00 size flywheel housing for mounting a transmission.
Technical Paper

Design of Plastic Cylinder Head Cover in Place of Aluminum Cylinder Head Cover for Light Duty Diesel Engines for Weight Reduction Purpose

Currently automotive design is facing multi facet challenges such as reduction in greenhouse gases, better thermal management, and low cost solution to market, vehicle weight management etc. Considering these challenges, efforts had been taken to improve weight management of engine while optimizing the cost of it. Good ‘engine breathing’ is usually associated with efficient intake system e.g. high flow air filter, a well-designed manifold, cylinder block, cylinder head and cylinder head cover etc. However, efficient ‘crankcase breathing’ is an equally important function of any engine. Even in a new engine, the combustion pressure will inevitably pass the piston rings into the crankcase. If an engine’s breathing system should become blocked or restricted, the crankcase will pressurize causing lots of problems to the engine. Prior to 1963 most vehicle engines vented their vapors and oil deposits to atmosphere and the road surface.
Technical Paper

New Methods and Systems for Monitoring the Functional Stability Parameters of Wheel Machines Power Units

The methods and principles of monitoring and diagnosing the parameters of power units are generalized. They allow increasing the wheeled vehicles operational reliability. Systems for monitoring the functional stability parameters of the most sensitive to operating conditions systems and assemblies of machines have been developed on the example of a cylinder-piston engine group and steering. An improved method for diagnosing the steering of an articulated wheeled vehicle, which significantly affects the safety of its use, is proposed based on the use of angular accelerations of sections in the road plane as a diagnostic parameter. The dependence for determining the angular accelerations for the case of the random installation of two sensors of the mobile registration and measuring complex on the machine, which allows increasing the accuracy of measurements, is obtained. Experimental studies to diagnose the steering of wheeled vehicles with various operating times have been carried out.
Technical Paper

Three-Dimensional Multi-phase Physics-Based Modeling Methodology to Study Engine Cylinder-kit Assembly Tribology and Design Considerations- Part I

Understanding cylinder-kit tribology is pivotal to durability, emission management, reduced oil consumption, and efficiency of the internal combustion engine. This work addresses the understanding of the fundamental aspects of oil transport and combustion gas flow in the cylinder kit, using simulation tools and high-performance computing. A dynamic three-dimensional multi-phase, multi-component modeling methodology is demonstrated to study cylinder-kit assembly tribology during the four-stroke cycle of a piston engine. The percentage of oil and gas transported through different regions of the piston ring pack is predicted, and the mechanisms behind this transport are analyzed. The velocity field shows substantial circumferential flow in the piston ring pack, leading to blowback into the combustion chamber during the expansion stroke.
Technical Paper

Sludge and Varnish Evaluation of Polyether Amine Gasoline Fuel Additives at “Complete Fuel System Cleaner” Aftermarket Fuel Additive Concentrations

Sludge and Varnish deposits that can build up in the crankcase originate in large part from fuel and fuel components that enter the crankcase through blow-by. These deposits can lead to a variety of engine issues including piston skirt deposits, cylinder bore scuffing, stuck lifters and oil filter plugging. A test has been developed to evaluate the contribution of “Complete Fuel System Cleaner” (CFSC) aftermarket fuel additives to crankcase sludge and varnish deposit formation. CFSC aftermarket fuel additives are typically formulated with polyether amine (PEA) chemistry and at concentrations that exceed 2000ppm. Three different commercially-available CFSC products were tested, containing two different classes of PEA chemistry - propylene oxide-based PEA (“PO-PEA”) and butylene oxide-based PEA (“BO-PEA”). Two of the three products contained the same PO-PEA chemistry, but at different concentrations, to show the effect of additive dosage.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Technical Paper

Experimental and Numerical Investigation of the Multiphase Flow and Heat Transfer in an Oil Jet Cooled Engine Piston

The piston temperature has to be carefully controlled to achieve effective and efficient thermal management in the internal combustion engines. One of the common methods to cool piston is by injecting oil from the crankcase underside to the piston under-crown area. In the present study, a novel 3-D multiphase thermal-fluid coupled model was developed using the commercial CFD software SimericsMP+ to study the piston cooling using the oil jet. In this model, an algorithm was proposed to couple the fluid and solid computation domain to account for the different timescale of heat transfer in the fluid and solid due to the high thermal inertia of the solid piston. The heat transfer coefficient (HTC) and reference temperature were mapped to the piston top surface and the liner temperature distribution was also used as the boundary condition. The temperature-dependent material properties, piston motion, and thermal contact resistance between the ring and piston were also accounted for.
Technical Paper

The Isochoric Engine

For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Technical Paper

Developing High-Performance Motorcycle Oils

Published motorcycle lubricant research often focuses on developments to meet certain specifications, regulatory requirements, or a combination of the two. Seemingly missing from the literature is research where the primary goal is development of a lubricant that enables maximum torque, power and acceleration from a machine for the purpose of winning races. The present study combines the two areas of research, where a high-performance motorcycle engine oil platform is developed to be used in competition, while simultaneously meeting the necessary regulations and specifications to be useful for commuters and leisure riders alike. Well-known are the demands on a motorcycle oil, which must lubricate and protect the crankcase, clutch and gears, all of which have competing requirements such that a strategy to improve the performance in one area can cause a detriment in another.
Technical Paper

Characteristics of Diesel Engine Oil for Heavy Duty Commercial Vehicles Achieving for both Fuel Economy and Reliability

When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas.
Technical Paper

Development of Low Cost Closed Crankcase Ventilation With Oil Mist Separation System on Light Duty Diesel Engine

Currently automotive industry is facing bi-fold challenge of reduction in greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus on customer value proposition. In engine emission the blow by gases are one of the source of greenhouse gases from engine. Blow-by gases not only consist of unburnt hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle. Considering the above challenges, effort taken to develop a low-cost closed crankcase ventilation with oil mist separation system on diesel engine. For cost-effective solution, two different design and configuration of oil mist separation system developed.
Technical Paper

A Comprehensive Study on Euro 6 Turbocharger Selections and Its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms a good strategy will be to optimize the engine out emission through in cylinder emission control techniques and a right sized after treatment system has to be used for this optimized engine. There exist several factors and trade-off between these should be established for in cylinder optimization of emissions. Since the turbocharger plays an apex role in controlling both the performance and engine out emissions of a CI engine, turbocharger selection is a crucial step in the development of new generation of Euro 6 engines in India. Such engines are equipped with additional actuators such as Intake Throttle Valve and Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission.
Technical Paper

Achieving Ultra-Low Oil Consumption in Opposed Piston Two-Stroke Engines

The opposed piston two-stroke (OP2S) engine architecture is widely recognized for its improved fuel efficiency relative to a four-stroke engine. Achates Power Inc. seeks to demonstrate the market readiness of the OP2S engine by proving competitive in other important areas, one of which is oil consumption. Achieving oil consumption competitive to modern four-stroke engines is thus a key step in bringing OP2S technology to market. Two-stroke engines have historically suffered from higher engine lube oil consumption and subsequent emissions and durability challenges. This is primarily due to two main features of traditional two-stroke engines; the direct interaction of the piston skirt and rings with the intake and/or exhaust ports, which results in a direct leak path for lube oil to the combustion chamber and/or exhaust manifold, and crankcase-scavenged architectures which entrain oil into air being pumped through the crankcase.
Journal Article

Comparative Performance of 12 Crankcase Oil Mist Separators

Abstract Closed crankcase ventilation (CCV) systems are required in most automotive markets in order to meet emissions regulations. Such systems usually require a separator to recover oil and return it to the sump. Many end users fit improved separators in order to reduce intake/aftercooler contamination with soot/oil. This study measured clean and wet pressure drop and filter capture efficiency in 12 different crankcase oil mist separators which are commonly used for either original equipment (OE) or aftermarket fitment to passenger vehicles and four-wheel drives (≤200 kW). The filters tested spanned three different size/rating classes as well as included both branded and unbranded (imitation) models. In addition to filters, separators (often termed “catch cans”) and an OE cyclone separator were also examined. Testing was performed under controlled laboratory conditions using methods equivalent to previous work and current mist filter test standards.
Technical Paper

Study of a Turbocharged Engine for Motorbike Application

Nowadays, the engine charging practice is widely adopted in the automotive field in relation to the “downsizing” technology: the reduction of the displacement and the adoption of a higher boost pressure, through a charging system, allow shifting the engine operating point in a zone of higher efficiency for a given engine torque. On the other hand, given a certain displacement, a supercharger can be adopted to increase the performance of the engine. The objective of this work is to provide a detailed analysis about the feasibility of the implementation of a charged engine to a motorbike, with main focus on the possibility to achieve a challenging performance target: in a first stage, several engine architectures (In-line, V-configuration, Boxer) together with different charging concepts (centrifugal or volumetric compressor, with mechanical or fluid-dynamic connection to the engine) have been analyzed from the point of view of packaging.

Method for Assessing the Cleanliness Level of New Hydraulic Fluid

To provide a method by which to assess the cleanliness of new hydraulic fluids. The method is applicable to new mineral and synthetic hydraulic fluids - regardless of packaging. This SAE Standard is not intended as a procedure for operating equipment.
Technical Paper

Optimization of Oil Separation Unit for Two Stage Turbocharged Engine

In addition to performance target, recent stringent emission legislation and reduction in oil consumption are the major driving force for engine design and development. In this reference importance of crankcase ventilation has increased immensely and the manufacturers are bound to develop most efficient system with high oil trap efficiency. In crankcase ventilation system, the blow-by gases from the crankcase are routed to the intake manifold through Oil separator system. The oil separator task is to retain the oil part from the blow by gas and send it back to sump. Developing an oil separator for the engine studied here was very challenging considering double stage turbocharger which produces very fine mist of oil and is difficult to separate. The study shows that oil mist coming in blow by is of size 0.3 micron and lesser than it. The major contribution of these fine mists was from turbocharger.
Technical Paper

Development through Simulation of a Turbocharged 2-Stroke G.D.I. Engine Focused on a Range-Extender Application

An original 2-stroke prototype engine, equipped with an electronically controlled gasoline direct-injection apparatus, has been tested over the last few years, and the performances of these tests have been compared with those obtained using a commercial crankcase-scavenged 2-stroke engine. Very satisfactory results have been obtained, as far as fuel consumption and unburned hydrocarbons in the exhaust gas are concerned. Large reductions in fuel consumption and in unburned hydrocarbons have been made possible, because the injection timing causes all the injected gasoline to remain in the combustion chamber, and thus to take part in the combustion process. Moreover, a force-feed lubrication system, like those usually exploited in mass-produced 4-stroke engines, has been employed, because of the presence of an external pump. In fact, it is no longer necessary to add oil to the gasoline in the engine, as the gasoline does not pass through the crankcase volume.