Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

High Voltage Vehicle Safety Systems and PPE

2021-08-16
High voltage vehicle safety is a primary concern for every technician or engineer involved in developing, diagnosing or repairing hybrid or electric vehicles. Engineers/technicians working in this field should complete safety training before they interface with hybrid, plug-in or electric vehicles.
Training / Education

Fundamentals of High Voltage xEV, Safety, and PPE

2021-07-16
Do you know what personal protective equipment (PPE), tools, and instruments are needed to keep you safe around high voltage (HV) vehicles? Are you aware of how to protect yourself or your employees when working around high voltage systems and platforms? Safety is paramount when working around any type of high voltage. As electric vehicles (EV) and EV fleets become more prevalent, the critical need for OEMs, suppliers, companies, and organizations to provide comprehensive safety training for teams working with or around xEV systems and platforms increases.
Standard

Aircraft Fluorescent Lighting Ballast/Fixture Safety Standard

2021-04-19
WIP
AS4914E
The purpose of this standard is to recommend minimum performance requirements to assist the specification writer in establishing a failsafe airplane interior Fluorescent light assembly design. This standard relates to the design of lamp ballasts, lampholders, fixtures, and installation of the same.
Standard

Alarm—Backup—Electric Laboratory Performance Testing

2021-04-06
WIP
J994
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated backup alarm devices primarily intended for use on off-road, self propelled work machines as defined by SAE J1116 (limited to categories of 1) construction, and 2) general purpose industrial). This purpose of this document is to define a set of performance requirements for backup alarms, independent of machine usage. The laboratory tests defined in this document are intended to provide a uniform and repeatable means of verifying whether or nor a test alarm meets the stated requirements. For on-machine requirements and test procedures, refer to SAE J 1446.
Technical Paper

Investigation of the Relative Performance of Vaned and Vaneless Mixed Flow Turbines for Medium and Heavy-Duty Diesel Engine Applications with Pulse Exhaust Systems

2021-04-06
2021-01-0644
This paper details results of a numerical and experimental investigation into the relative performance of vaned and vaneless mixed flow turbines for application to medium and heavy-duty diesel engines utilizing pulse exhaust systems. Previous investigations into the impact of nozzle vanes on turbine performance considered only open turbine housings, whereas a majority of medium and heavy-duty diesel engine applications are six-cylinder engines using pulse exhaust systems with divided turbines. The two turbine stages for this investigation were carefully designed to meet the constraints of engines with pulse exhaust systems and to control confounding factors that would undermine the vaned vs vaneless performance comparison. Detailed CFD analysis and turbine dynamometer test results confirm a significant efficiency advantage for the vaned turbine stage under both full and partial admission conditions.
Technical Paper

Detailed Characterization of Gaseous Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0634
With the advancement of engine technologies and combustion strategies, aftertreatment architectures are expected to evolve as they continue to be the primary emissions mitigation hardware. Some of the engine approaches offer unique challenges and benefits that are not well understood beyond criteria pollutant emissions. As such, there continues to be a need to quantify engine emissions characteristics in pursuit of catalyst technology development and the use of advanced simulation tools. The following study discusses results from an extensive engine emissions assessment for current state-of-the-art technology and novel combustion regimes. The engines tested include a Tier 4 final compliant 6.8 L John Deere PSS 6068 diesel engine, a modified 15 L diesel engine, and a dual fuel 13 L natural gas-diesel engine. The dual fuel engine could operate in conventional positive ignition mode (CDF) or low temperature reactivity-controlled compression ignition mode (RCCI).
Technical Paper

Future Diesel-Powertrain in LCV and SUV-Electrified, Modular Platform with Focus on Emission, Efficiency and Cost

2021-04-06
2021-01-0635
Considering worldwide future emission and CO2-legislation for the Light Commercial Vehicle segment, a wide range of powertrain variants is expected. Dependent on the application use cases all powertrain combinations, from pure Diesel engine propulsion via various levels of hybridization, to pure battery electric vehicles will be in the market. Under this aspect as well as facing differing legal and market requirements, a modular approach is presented for the LCV and SUV Segment, which can be adapted flexibly to meet the different requirements. A displacement range of 2.0L to 2.3L, representing the current baseline in Europe is taken as basis. To best fulfill the commercial boundaries, tailored technology packages, based on a common global engine platform are defined and compared. These packages include engine related technical features for emission- and fuel consumption improvement, as well as electrification measures, in particular 48V-MHEV variants.
Technical Paper

Investigating the Effect of Water and Oxygen Distributions on Consistency of Current Density Using a Quasi-Three-Dimensional Model of a PEM Fuel Cell

2021-04-06
2021-01-0737
Activation loss, mass transfer loss and ohmic loss are the three main voltage losses of the polymer electrolyte membrane fuel cell. While the former two types are relevant to concentration of oxygen in catalyst layer and the later one is associated with the water content in membrane. Distributions of water content and oxygen in a single cell are inconsistent which cause that current densities in each segment of the single cell are different. For the dry inlet gas, the water in the segments near the gas inlet channel will be carried to the segments near the gas outlet channel, which causes high ohmic loss of the segments near the gas inlet channel. In this work, a transfer non-isothermal quasi-three-dimensional model is developed to investigate inconsistency of current densities.
Technical Paper

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Evaluation of 48V and High Voltage Parallel Hybrid Diesel Powertrain Architectures for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0720
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Technical Paper

Influence of Pyrolised Waste Engine Oil into Bioethanol and Biobutanol on the Performance of a Variable Compression Ratio Engine on the Performance- An Experimental Study

2021-04-06
2021-01-0793
Lubricating oil from the engines is not utilized properly and these oils are spoiling the land and groundwater significantly. This study is to utilize pyrolised waste engine oil as an additive into diesel, diesel-ethanol, and diesel-butanol blends for the enhancement of essential properties. The study was conducted in two stages: Initially various proportions of pyrolised waste engine oil were blended with diesel, diesel-ethanol (15% bioethanol) and diesel-butanol (20% biobutanol) blends followed by testing the properties to obtain three fuel blends consisting of one from each category (by comparing the base properties with diesel). Properties of these blends were tested and the performance in a compression ignition engine by varying the fuel injection timing 23, 26, and 29 °before top dead centre) was performed.
Technical Paper

Investigation of Gasoline Compression Ignition in a Heavy-Duty Diesel Engine Using Computational Fluid Dynamics

2021-04-06
2021-01-0493
A computational fluid dynamics (CFD) model was developed to explore gasoline compression ignition (GCI) combustion. Results were validated with single-cylinder engine (SCE) experiments. It was shown that the CFD model captured experimental results well. Cylinder pressure, heat release and emissions from the CFD model were also used to analyze the performance of GCI combustion with a current heavy-duty diesel engine platform. This work also provides detailed analysis on in-cylinder combustion and emissions using CFD. It was found that multiple injection strategy can deliver desirable fuel stratification profile that benefits both engine and emissions performance. A wave contoured piston was compared with a stepped-lip type piston for both GCI and Diesel combustion scenarios on the same engine platform. Stepped-lip pistons offer an opportunity to use multiple injection strategies to overcome high UHC emissions of GCI combustion when compared to wave pistons.
X