Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Vehicle Dynamics for Passenger Cars and Light Trucks

2021-09-20
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
Training / Education

Applied Vehicle Dynamics

2021-04-19
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Technical Paper

Design of Baja SAE Gearbox for Optimal Performance and Minimum Weight

2020-10-30
2020-32-2311
Baja SAE is an intercollegiate competition where teams design and build a single-seat off-road vehicle that is powered by a small 10 HP Briggs & Stratton engine. Due to this power constraint, it is crucial to optimize the vehicle's weight and performance. The purpose of this paper is to demonstrate the process of simulating, designing, manufacturing, and testing the gearbox of the vehicle. The design process began by creating a vehicle dynamics simulation, which included engine performance, CVT Shifting, tire slipping, vehicle mass, rotational inertia, air drag, rolling resistance, weight shift, and drivetrain efficiency. These calculations predicted acceleration times, top speed, and optimal gear ratio. An often-neglected parameter that was analyzed was the rotational inertia in the drivetrain system. The results showed the effective mass of the vehicle increased 12% above the weight of the vehicle, primarily due to the weight and size of the CVT primary pulley.
Technical Paper

Transitioning from IC Engine to Electric Vehicle: An Optimized Wheel End Solution

2020-10-05
2020-01-1632
This paper discusses the change in vehicle parameters when moving from a conventional internal combustion engine to electric motor. It discusses the impact on the wheel end bearings. Typically these include higher GAWRs (Gross Axle Weight Rating) at lower center of gravity heights. These changes require bearings to handle higher loads. Typically, larger loads will increase the bearing size and with it the mounting interface dimensions to auxiliary components. Timken demonstrates an alternative bearing design that can handle higher vehicle GAWRs but would allow for continuity in the surrounding brake corner components – saving OEMs significant design costs and delays.
Technical Paper

Determination of Diffusion Capability of Oxygen Through Brake Pads From the Surface Towards the Interior

2020-10-05
2020-01-1616
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the brake pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. In previous work from RIMSA, it was observed that iron sulphide had been reacted below the surface of the brake pad, suggesting that tribochemistry does not only take place on the surface. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a peculiar microstructure (rough microstructure) when it becomes oxide that can be recognized easily, making it a good marker.
Technical Paper

A Full-System Approach to Maximise Energy Efficiency of a Wheel Bearing

2020-10-05
2020-01-1631
Environmental sustainability is morphing Automotive technical development strategies and driving the evolution of vehicles with a speed and a strength hardly foreseeable a decade ago. The entire vehicle architecture is impacted, and energy efficiency becomes one of the most important parameters to reach goals, which are now not only market demands, but also based on regulatory standards with penalty consequences. Therefore, rolling drag from all bearings in multiple rotating parts of the vehicle needs to be reduced; wheel bearings are among the biggest in size regardless of the powertrain architecture (ICE, Hybrid, BEV) and have a significant impact. The design of wheel bearings is a complex balance between features influencing durability, robustness, vehicle dynamics, and, of course, energy efficiency.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. Vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section in front of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during the braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

A Study of the Interactions Between Phenolic Resin and Metal Sulphides and their Contribution to PAD Performance and Wear

2020-10-05
2020-01-1600
In order to keep the coefficient of friction stable, some additives such as metal sulphides, are included in the brake pads formulation. Previous work from RIMSA has shown that oxidation temperature range of the metal sulphides can be one of the key properties to explain their contribution to the performance and wear of a PAD. This new work is a step forward in the interpretation of the mechanism of sulphides as chemically active additives in the brake pads. Phenolic resin is the matrix of the brake pads and starts to decompose around 300 ºC in presence of oxygen and temperature. In order to establish a connection on between sulphide oxidation and phenolic resin degradation, several studies based on heat treatment of blends of different metal sulphides (Iron sulphide, Tin sulphide and Composite sulphide) with phenolic resin have been done. Then the material evolution was studied with techniques such as TGA - DSC, XRD, IR and SEM - EDS.
Technical Paper

Evaluation of a Low-Metals, Non-Petrochemical Coke for Use in Automotive Friction Materials

2020-10-05
2020-01-1603
A study was performed to compare the performance of automotive friction elements, each manufactured with one of two different coke fillers. Coke #1 is a conventional calcined petroleum coke, and coke #2 a proprietary, calcined coke manufactured from a non-petrochemical feedstock. Subject coke materials were fully characterized, physically and chemically. Both coke materials are similar in their respective physical properties, including morphology, hardness, and crush strength. However, there is a significant difference in the trace metal content of the two materials, with coke #1 containing a higher content of sulfur, calcium, iron, nickel, and vanadium than coke #2. Nickel and vanadium are considered potential environmental hazards. Initial friction element evaluation was performed using the J661 Brake Lining Quality Test Procedure (Chase Test). Ultimately each coke material was formulated into two different automotive brake elements.
Technical Paper

Design and Simulation of Braking System for ATV

2020-10-05
2020-01-1611
Design and Simulation Analysis of Braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, Structural, Thermal, Dynamic, Computational Flow Dynamics, Vibrational & Fatigue Behaviour of Ventilated brake disc Rotor, Hub and Brake Caliper are analysed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analysed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analysed from their characteristics plot. Vibrational Behaviour, Static and Structural Behaviour, Thermal Behaviour, Performance Efficiency, Flow Behaviour of Ventilated Disc Brake Rotor can be easily depicted with respect to Bump and Droop during Acceleration, High Climb and manoeuvrability.
Technical Paper

Rust is not a Must. Improvement of Discs Corrosion Resistance by Tuning of Cast Iron Alloying Elements and Microstructure.

2020-10-05
2020-01-1624
In the last decade, the increasing electrification of road transports has stimulated the look for new braking systems with a high corrosion resistance. This resulted in a fervent research activity behind the development of disc brakes with a reduced corrodibility under demanding tribocorrosive environments. Despite of this, a significant reduction of the cast iron disc corrodibility can be achieved not only by developing variously coated rotors, but also by modulating the intrinsic corrodibility of iron. This can be done by and ad-hoc refining of the cast iron: a) alloying elements concentration; b) microstructure; and c) carbon content and morphology. At this regard, in this contribution, the corrosion properties of a representative ensemble of cast iron specimens are reviewed.
Technical Paper

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon being the most common alloying element. Despite the excellent castability and machinability of AlSix alloys, anodization is often necessary in order to provide to AlSix components the required corrosion resistance or when the braking system has to withstand to severe chloride-rich environments [1]. Even if the anodization process is known for almost 100 years, a continuous research and process optimization can lead to the development of anodic layers with enhanced morphological and electrochemical properties, which enable a prolonged resistance of calipers under endurance corrosive tests (e.g. >1000hours Neutral Spray Tests).
X