Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Training / Education

ADAS Application Automatic Emergency Braking

2024-09-19
Active safety and (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic emergency braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Aircraft Cabin Safety and Interior Crashworthiness

2024-07-23
This two-day course will begin with a discussion of commercial off the shelf (COTS) test requirements.  The instructor will then guide participants through the various cabin interior emergency provisions and their requirements such as supplemental passenger oxygen, emergency equipment, seats, flammability, emergency exits, emergency lighting and escape path markings, and various other cabin interior systems.  
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the re-frigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration circuit and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air con-ditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer con-figurations can be used to dampen these pulsations.
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

The Potential of Hydrogen High Pressure Direct Injection Toward Future Emissions Compliance: Optimizing Engine-Out NOx and Thermal Efficiency

2024-06-12
2024-37-0005
By building on mature internal combustion engine (ICE) hardware combined with dedicated hydrogen (H2) technology, the H2-ICE has excellent potential to accelerate CO2 reduction. H2-ICE concepts can therefore contribute to realizing the climate targets in an acceptable timeframe. In the landscape of H2-ICE combustion concepts, High Pressure Direct Injection (HPDI™) is an attractive option considering its high thermal efficiency, wide load range and its applicability to on-road as well as off-road heavy-duty equipment. Still, H2-HPDI is characterized by diffusion combustion, giving rise to significant NOx emissions. In this paper, the potential of H2-HPDI toward compliance with future emissions legislation is explored on a 1.8L single-cylinder research engine. With tests on multiple load-speed points, Exhaust Gas Recirculation (EGR) was shown to be an effective measure for reducing engine-out NOx, although at the cost of a few efficiency points.
Technical Paper

A Numerical Study of the Laminar Flame Speed of Hydrogen/Ammonia Mixtures under Engine-like Conditions

2024-06-12
2024-37-0020
In the effort to achieve the goal of a climate-neutral transportation system, the use of hydrogen and other synthetic fuels plays a key role. As battery electric vehicles become more widespread, e-fuels could be used to defossilize the hard-to-electrify transportation sectors and to store energy produced from renewable and non-continuous energy sources. Among e-fuels, hydrogen and ammonia are very attractive because they are carbon-neutral and their oxidation does not lead to any CO2 emissions. Furthermore, hydrogen/ammonia mixtures overcome the issues that arise as each of the two fuels is separately used. In the automotive sector, the use of either hydrogen, ammonia or their blends require a characterization of such mixtures under engine-like conditions, that is, at high pressures and temperatures. The aim of this work is to evaluate the Laminar Flame Speed (LFS) of hydrogen/ammonia mixtures by varying the thermodynamic conditions and the molar composition of the reactants.
X