Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Rubber Science and Technology

2019-10-15
Rubber – a loosely cross-linked network of polymer chains that when strained to high levels will forcibly return to at or near it original dimensions. This course is designed to provide the participant with a thorough understanding of rubber’s engineering characteristics. This class will introduce the various sources of rubber, both natural and synthetic. The class will contrast the differences between rubber and plastics; including thermoplastic rubber. Detailed discussions on how to select the correct rubber polymer for the application, highlighting the pros and cons of each major rubber type.
Technical Paper

Universal Synaptics - Aging Electronics, Intermittence, & No Fault Found

2019-09-16
2019-01-1889
Intermittence occurs randomly in time, place, amplitude and duration. The very nature of the failure mode suggests that the ability to detect and further isolate the intermittence root cause is based on detection SENSITIVITY and PROBABILITY rather than conventional methods concentrating on ohmic measurement accuracy. Simply put, you can’t detect an intermittent event until it occurs, and then you might have limited opportunities to catch it on the specific circuit when it does. Trying to measure fractions of a milliohm, scanning one circuit at a time, is ineffective for this particular failure mode. In this paper we will outline the problem of intermittence and its testing difficulties. More importantly, we will describe the unique equipment and process which has produced overwhelming success in Intermittence / NFF resolution and MTBF extension.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

2019-08-27
This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries.  By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems.  This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels. 
Technical Paper

Analysis of the emission conversion performance of gasoline particulate filters and four-way catalysts over lifetime

2019-08-15
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Due to their rapid market introduction, extensive field experience with GPFs is not yet available. Especially for four-way catalytic converters, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. In the first part of the paper, experimental GPF ash loading results are presented. Since most of the ash accumulated in the filter results from the combustion of lubricating oil additives, a burner test bench with a purpose-designed oil injection system was chosen for the investigations. The analysis of the backpressure results show that, contrary to high soot loadings, the ash load has a relatively low impact on engine performance and fuel consumption.
Article

Lockheed Martin announces latest hypersonic progress at Le Bourget

2019-06-17
Lockheed Martin successfully flight tested the AGM-183A Air-Launched Rapid Response Weapon (ARRW) on a U.S. Air Force Boeing B-52 Stratofortress. The captive carry flight – announced during the 2019 International Paris Air Show – marks Lockheed Martin’s most recent demonstration of hypersonic technology development.
Standard

Oil, Reference, for "L" Stock Rubber Testing

2019-06-13
WIP
AMS3020B
This specification covers a petroleum-base reference oil. This fluid has been typically used as a reference oil to estimate the ability of elastomeric compounds to conform to specified requirements after immersion at a specified temperature for a specified time and temperature as required by the material.
Standard

Polyamide Type 6-6, Plastic Moldings and Extrusions

2019-06-13
CURRENT
AMS3617F
This specification covers one type of nylon thermoplastic resin in the form of moldings and extrusions. These products have been used typically for parts requiring high strength and resistance to aircraft fuels and lubricants up to 120 degrees C (248 degrees F), but usage is not limited to such applications.
Technical Paper

Scaling Evaluation of Ice-Crystal Icing on a Modern Turbofan Engine in PSL Using the COMDES-MELT Code

2019-06-10
2019-01-1920
This paper presents preliminary ice-crystal icing (ICI) altitude scaling evaluation results of a Honeywell Uncertified Research Engine (HURE) that was tested in the NASA Glenn Research Center Propulsion Systems Laboratory (PSL) during January of 2018. This engine geometry features a hidden core design to keep the core less exposed. The engine was fitted with internal video cameras to observe various ice buildup processes at multiple selected locations within the engine core flow path covering the fan stator, the splitter-lip/shroud/strut, and the high pressure compressor (HPC) variable inlet guide vane (IGV) regions. The potential ice accretion risk was pre-determined to occur by using NASA’s in-house 1D Engine Icing Risk assessment code, COMDES-MELT. The code was successful in predicting the risk of ice accretion in adiabatic regions like the fan-stator of the HURE at specific engine operating points.
Technical Paper

Utilization of Single Cantilever Beam Test for Characterization of Ice Adhesion

2019-06-10
2019-01-1949
Many engineering systems operating in a cold environment are challenged by ice accretion, which unfavorably affects their aerodynamics and degrades both their performance and safety. Precise characterization of ice adhesion is crucial for an effective design of ice protection system. In this paper, a fracture mechanics-based approach incorporating single cantilever beam test is used to characterize the near mode-I interfacial adhesion of a typical ice/aluminum interface with different surface roughness. In this asymmetric beam test, a thin layer of ice is formed between a fixed and elastically deformable beam subjected to the applied loading. The measurements showed a range of the interfacial adhesion energy (GIC) between 0.11 and 1.34 J/m 2, depending on the substrate surface roughness. The detailed inspection of the interfacial ice fracture surface, using fracture surface replication technique, revealed a fracture mode transition with the measured macroscopic fracture toughness.
Technical Paper

Characterization of Mode-II Interfacial Fracture Toughness of Ice/Metal Interfaces

2019-06-10
2019-01-1947
Airborne, marine and ground structures are vulnerable to atmospheric icing in cold weather operation conditions. Most of the ice adhesion-related work have focused on the mechanical ice removal strategies because of practical considerations, while limited literature is available for fundamental understanding of the ice adhesion process. Here, we present a fracture mechanics-based approach to characterize interfacial fracture parameters for the shear behavior of a typical ice/aluminum interface. An experimental framework employing two complementary tests (1) lap shear and (2) shear push-out tests was introduced to assess the mode-II fracture parameters for the selected aluminum/ice interface. Both analytical (shear-lag analysis) and numerical (finite element analysis incorporating cohesive zone method) models were used to evaluate shear fracture parameters.
Technical Paper

Analysis of Experimental Ice Accretion Data and Assessment of a Thermodynamic Model during Ice Crystal Icing

2019-06-10
2019-01-2016
This paper analyzes ice crystal icing accretion data and evaluates a thermodynamic ice crystal icing model, which has been previously presented, to describe the possible mechanisms of icing within the core of a turbofan jet engine. The model functions between two distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. Freeze-dominated icing occurs when liquid water (from melted ice crystals) freezes and accretes on a surface along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized as having strong adhesion to the surface. The amount of ice accretion is partially dictated by a freeze fraction, which is the fraction of impinging liquid water that freezes. Melt-dominated icing occurs as unmelted ice on a surface accumulates. This melt-dominated icing is characterized by weakly bonded surface adhesion.
Standard

Flammability of Polymeric Interior Materials - Horizontal Test Method

2019-06-10
WIP
J369
This SAE Standard pertains to automotive vehicles and off-road, self-propelled work machines used in construction, general purpose industrial, agriculture, forestry, and specialized mining machinery. This standard does not address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this document to establish safety and health practices and determine the applicability of regulatory limitations prior to use. Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed when conducting this test.
Standard

Terms and Definitions Related to Testing of Automated Vehicle Technologies

2019-06-10
CURRENT
DINSAESPEC91381
This bilingual DIN SAE SPEC (German/English) defines terms used in automated vehicle technology, particularly terms relating to simulations and test environments. This document will be a useful tool for further research and development activities in this area, and for better communication with international partners. It will help unify language in this complex, interdisciplinary field. This DIN SAE SPEC does not define terms on levels of automation or vehicle parameters. This DIN SAE SPEC (PAS) is intended for R&D personnel, software developers, test track operators, testing organizations and manufacturers of automated vehicles.
X