Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

High Voltage Vehicle Safety Systems and PPE

2021-08-16
High voltage vehicle safety is a primary concern for every technician or engineer involved in developing, diagnosing or repairing hybrid or electric vehicles. Engineers/technicians working in this field should complete safety training before they interface with hybrid, plug-in or electric vehicles.
Training / Education

AS13004 Process Failure Mode and Effects Analysis (PFMEA) and Control Plans

2021-05-18
In the Aerospace Industry there is a growing focus on Defect Prevention to ensure that quality goals are met. Process Failure Mode & Effects Analysis (PFMEA) and Control Plan activities described in AS13004 are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Process Flow Diagrams, Process Failure Mode & Effects Analysis (PFMEA) and Control Plans as described in AS13004. It will show the links to other quality tools such as Design FMEA, Characteristics Matrix and Measurement Systems Analysis (MSA).
Training / Education

Applying DO-254 for Avionics Hardware Development and Certification

2021-05-06
The avionics hardware industry world-wide is now commonly required to follow DO-254 Design Assurance Guidance for Airborne Electronic Hardware for literally all phases of development: Safety, Requirements, Design, Logic Implementation, V&V, Quality Assurance, etc. The DO-254 standard is a companion to the software DO-178B standard; however, there are many differences between hardware and software which must be understood. This basic course introduces the intent of the DO-254 standard for commercial avionics hardware development.
Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

The In-Depth PHEV Driveline Torsional Vibration Induced Vehicle NVH Response Study by Integrated CAE/Testing Methodology

2020-09-30
2020-01-1507
In this paper,an amesim 1-d refined driveline model, including detailed engine, damper, dual clutch, transmission, differential, motor, halfshaft, wheel, body, suspension, powertrain mounting and powertrain rigid body, was built up, off a p2.5 topology phev,to predict torsional vibration induced vehicle NVH response addressing differing driving scenarios,like WOT rampup,parking engine start/stop,ev driving to tipnin(engine start) then to tipout(engine stop).firstly,the torsional vibration modes were predicted,addressing differing transmission gear steps of hev/ev driving mode,and the critical modes could be detected,as such, caveats/measures could be applied to setup the modal alignment chart/warn other engineering section from the very start of vehicle development; secondly,secondly,the holistic operational testing,which defined plenty measurement points including rpm fluctuation at differing location of engine/transmission,spark angle,crank position,injection angle,valve timing,MAP/MAF,etc, partly for later model calibration,partly for extract mandatory excitation input,like cylinder pressure trace/mount and suspension force,and partly for the reference of next optimization stage, was implemented on vehicle chassis dyno in a hemi-anechoic chamber.as it was merely centered on torsional vibration induced scenarios,the intake system/exhaust system /engine radiation noise contribution was excluded by specific measures,like BAM,etc, during the testing;thirdly,the NTF/VTF from the mount/suspension force exertion points to vehicle response points were measured off trimmed body impact testing, to create structural TPA model,that way,each transfer path contribution to the response point could be predicted and overall response can be synthesized from all paths;fourthly,the above-mentioned driveline model,combined the excitation on each cylinder considering the gas torque/inertia torque and motor average torque,was well calibrated to predict the mount/suspension force/critical rpm fluctuation/vibration;finally,it was validated that CAE results correlate very well to measurement outcome for defined loadcase, and that can be adopted to phev driveline/vehicle NVH development from the very start of vehicle development phase so as to expedite vehicle NVH developing process.
Technical Paper

Study of the Glass Contribution to the Interior Acoustics of a Car and Related Countermeasures

2020-09-30
2020-01-1585
This paper shows that the collaboration between a glass manufacturer and a passive acoustic treatment manufacturer can bring different benefits and considerably improve the interior acoustics of a vehicle. In terms of passenger safety and well-being, glazing have always played a key role by offering solutions to interior comfort, particularly when it comes to heat and acoustics. Today, cars are becoming a living space which from an acoustic point of view brings a challenge for the interior comfort. Indeed, glazing has no absorption and classically it has an acoustic insulation weakness around its coincident frequency. In most of the cases, these different aspects make glazing one of the main contributors to the sound pressure level in the passenger compartment, and the trend is not one of change. However, there are possible countermeasures. One of which is the use of laminated glazing with acoustic PVB.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

An Active Safety System Able to Counter Aquaplaning, Integrated With Sensorized Tires, ADAS and 5G Technology for Both Human-Driven and Autonomous Vehicles

2020-09-27
2020-24-0019
Autonomous vehicles must guarantee safety in all road conditions, including driving on wet roads. Aquaplaning (or hydroplaning) is a phenomenon known since the beginning of automotive history, never solved by an active safety system. Currently, no countermeasure system on the market is able to effectively counteract aquaplaning: ABS, ESP or TCS are still inefficient in overcoming this situation. Latest statistical data confirm that the higher percentage of accidents, injuries and deaths are caused by wet road conditions. The aquaplaning happens when the water on the road is too much and the tires start to float causing the instantaneous loss of control. Such phenomenon occurs in human-driven vehicles, with the responsibility of the driver, but in autonomous vehicles (e.g. Level 5), the responsibility for the safety depends on the car and the reduction of the speed is not a solution.
Technical Paper

Combining GPS-tracks and accident data to improve safety of cycling paths

2020-09-27
2020-24-0020
The modal share in favour of private vehicles which characterized most of big cities all around the world in recent decades generated serious issues in urban areas in terms of pollution, accident and road congestion, constituting a well-known urban risk. Cycle mobility proves to be a valid solution to these problems, since the bicycle is an environmentally sustainable mean of transport as it contributes to the reduction of the space occupancy of road, traffic congestion and pollutant emissions. Bicycle ensures maximum energy efficiency in terms of trips made and physical resources used. It is also a healthy solution since it concurs to improve the quality of life of users and makes the cities more liveability. In order to encourage cycling, it is necessary not only to provide adequate dedicated infrastructures, but also to intervene on the management of other type of traffic, for example by introducing measures aimed at the reduction of traffic volumes and speed.
X