Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Aviation Parts to Medical Devices Bridging the Gap

2021-06-15
This one-day program is designed to provide introductory information for those organizations who are considering transitioning from the Aeronautic, Space and Defense industry to the Food & Drug Administration (FDA), Medical Device Manufacturing market. Reviewing essential information necessary to understand and successfully begin the journey to FDA Medical Device approval, this course will examine many of the controls between the AS9100 Standard and FDA Regulations and identify the similarities.
Technical Paper

Knowledge-Based Engineering CAD Templates Applied in Vehicle Advanced Concepts Design

2021-05-04
2021-01-5049
This work is part of a series of studies developed by the author. It is intended to systematically address the study and definitions of advanced concepts for the development of automotive design with a focus on Vehicle Definition (VD) and Occupant Packaging (VOP). The methodology presented here is based on the concepts of Knowledge-Based Engineering (KBE) that captures consolidated engineering knowledge that is repeatable, reusable, and noncreative. KBE’s goal is to optimize engineering tools in pursuit of best practices and performance gains, reducing time and cost. This methodology proposes the creation of a three-dimensional (3D) digital model using a Computer-Aided Design (CAD) tool, which will be called here the CAD KBE template. This model is in line with neural network technology that mimics the brain’s own problem-solving process, and every single template will be organized interdependently with other templates.
Standard

Rollover Testing Methods

2021-04-26
WIP
J2926
The scope of this document is to provide an overview of the techniques found in the published literature for rollover testing and rollover crashworthiness evaluation at the vehicle and component levels. It is not a comprehensive literature review, but rather illustrates the techniques that are in use or have been used to evaluate rollover crashworthiness-related issues.
Standard

School Bus Stop Arm Lamp

2021-04-22
WIP
J1133
This document provides design guidelines, test procedure references, and performance requirements for stop arm lamp devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading.
Technical Paper

Low-Speed Autonomous Shuttles – Lessons Learned from Real-World Implementation

2021-04-15
2021-01-1010
Low-Speed Automated Vehicles (LSAV) are being deployed in various scenarios to enhance mobility for a wide variety of transportation users. Current applications include providing last-mile connectivity between rider origins/destinations and fixed transit stops, and as circulating shuttles in areas such as business districts, military bases, parking lots, and theme parks. Their low access height, integration of self-deploying wheelchair ramps, and high levels of automation also provide opportunities for improved mobility for those with physical or cognitive challenges. LSAVs are typically highly automated battery-electric vehicles that transport up to eight passengers at speeds below 15 MPH on predefined and previously mapped routes. An attendant/operator may also be present during operation depending upon manufacturer and service provider policies, state and federal regulations, operational conditions and route complexity, and the specific assistive needs of prospective riders.
Journal Article

Analysis of Biomechanical Neck-Loading Metrics as a Function of Impact Severity in Low-to-Moderate Speed Rear Impacts: Results from Hybrid III 50th Percentile Anthropomorphic Test Devices

2021-04-14
Abstract We model neck loading as a function of impact severity in aligned rear impacts. Neck loading is understood and expected to vary as a function of factors including crash severity, occupant compartment design, and occupant metrics. Within occupant compartment design, seat and restraint characteristics are expected to influence the biomechanical response and occupant kinematics. We investigated the relationship between biomechanical neck-loading metrics and impact severity expressed as speed change (delta-V) by examining 47 low to moderate speed rear-impact crash and sled tests utilizing the Hybrid III (HIII) 50th male Anthropomorphic Test Device (ATD). Our hypothesis was that the relationship between severity expressed as delta-V and the neck metrics examined could be modeled as linear consistent with an understanding that neck loading in a rear impact results from the acceleration of the vehicle.
Journal Article

Potential of a Time-Triggered Crash System of a Steering Column on Driver Injuries

2021-04-14
Abstract Modern driver compartment restraint systems have at least three key components that work together: safety belt system, airbags, and collapsible steering column. During a crash, a steering column will collapse at a predetermined force called breakaway force. Once the force of a crash has reached the breakaway force threshold, the column will move towards the motor area. When the column moves, the drivers’ peak forces and acceleration are decreased because the time and distance that are given to decelerate are increased. The usage of a breakaway force element inside the steering column allows car manufacturers to control the movement of the steering column at a certain point during a crash. Any load below the breakaway force, such as airbag deployment and normal or misuse forces applied by the driver, is absorbed by the system. Today’s force-based systems are optimized (design/configure) using various crash configurations, leading to one specific behavior of the column.
Standard

Linear Impactor Calibration Procedure

2021-04-12
WIP
J3095
This recommended practice provides a procedure for measuring quantitatively the physical characteristics of linear impactors that are believed to effect impact test accuracy, repeatability, and reproducibility. Suggested values and tolerance are also provided for specific applications of linear impactor testing (i.e. Ejection Mitigation tests, Head form Impact tests, Body Block tests). Two functional groups of linear impactors are considered, those whose function is related primarily to displacement and those related to measuring acceleration or force.
Technical Paper

Research on Photobiological Safety of Automotive Active Infrared Detection System

2021-04-06
2021-01-0072
The automotive active infrared detection system is usually applied to the night driver assistance system or the diver attention monitoring system. However, the infrared light emitted by the active infrared detection system can cause damage to retina, cornea and eye crystals. This paper has studied the photobiological safety of the infrared light source used in the automotive active infrared detection system. Although it has been already have the general requirements of photobiological safety in international standards, there is not any requirements for automotive active infrared detection system. The range of the active infrared detection system depends on the radiation intensity of the infrared light source, but too much radiation intensity will cause harm to retina, cornea and eye lens when the infrared light source is too close to eyes.
Technical Paper

Child Restraint Systems (CRS) with Minor Installation Incompatibilities in Far Side Impacts

2021-04-06
2021-01-0915
Side impacts are disproportionately injurious for children compared to other crash directions. Far side impacts allow for substantial translation and rotation of child restraint systems (CRS) because the CRS does not typically interact with any adjacent structures. The goal of this study is to determine whether minor installation incompatibilities between CRS and vehicle seats cause safety issues in far side crashes. Four non-ideal CRS installation conditions were compared against control conditions having good fit. Two repetitions of each condition were run. The conditions tested were: 1) rear-facing (RF) CRS installed with a pool noodle to create proper recline angle, 2) RF CRS with narrow base, 3) forward-facing (FF) CRS with gap behind back near seat bight (i.e., vehicle seat angle too acute for CRS), 4) FF CRS with gap behind back near top of CRS (i.e., vehicle seat angle too obtuse for CRS). Second row captain’s chairs were set up at 10° anterior of lateral.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Technical Paper

Incidence and Mechanisms of Head, Cervical Spine, Lumbar Spine, and Lower Extremity Injuries for Occupants in Low- to Moderate-Speed Rear-End Collisions

2021-04-06
2021-01-0900
Automotive accidents and subsequent personal injury claims incur substantial costs annually. While seat and head restraint design continue to evolve and improve, occupant safety and injury risk assessment in rear-end collisions remain at the forefront of automotive innovation. In this study, we combined statistical analyses of nine years (2007-2015) of data from the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) database and one year (2017) of data from the Crash Investigation Sampling System (CISS) database with data acquired from vehicle-to-vehicle crash tests conducted with instrumented anthropomorphic test device (ATD) occupants. Together, these analyses were used to compare and relate field injury rates with potential mechanisms underlying head, cervical spine, lumbar spine, and lower extremity injuries in low-to moderate-speed rear-end collisions.
Technical Paper

Incidence and Mechanism of Head, Cervical Spine, Lumbar Spine, and Lower Extremity Injuries for Occupants in Low- to Moderate-Speed Frontal Collisions

2021-04-06
2021-01-0902
Automotive accidents and subsequent personal injury claims incur substantial costs annually. While three-point restraint usage, dual-stage airbags, and knee bolster and side curtain airbags have become more ubiquitous and, in some cases, governmentally mandated for front seat occupants, occupant safety and injury risk assessment continue to be at the forefront of automotive innovation. In this study, we combined analyses of the National Automotive Sampling System Crashworthiness Data System (NASS-CDS; 2007-2015) and the Crash Investigation Sampling System (CISS; 2017) with data acquired from vehicle-to-vehicle crash tests conducted with instrumented anthropomorphic test device (ATD) occupants. Together, these analyses were used to compare and relate field injury rates with potential injury mechanisms in low- to moderate-speed frontal collisions.
Technical Paper

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
Technical Paper

Protecting Passenger Vehicles from Side Underride with Heavy Trucks

2021-04-06
2021-01-0288
Impacts between passenger vehicles and heavy vehicles are uniquely severe due to the aggressivity of the heavy vehicles; this is a function of the difference in their geometry and mass. Side crashes with heavy vehicles are a particularly severe crash type due to the mismatch in bumper/structure height that often results in underride and extensive intrusion of the passenger compartment. Underride occurs when a portion of one vehicle, usually the smaller vehicle, moves under another, rendering many of the passenger vehicle safety systems ineffective. Heavy vehicles in the US, including single-unit trucks, truck tractors, semi-trailers, and full trailers, are currently not required to have side underride protection devices. The NTSB, among other groups, has recommended that side underride performance standards be developed and that heavy vehicles be equipped with side underride protection systems that meet those standards.
Technical Paper

Human Body Orientation from 2D Images

2021-04-06
2021-01-0082
This work presents a method to estimate the human body orientation using 2D images from a person view; the challenge comes from the variety of human body poses and appearances. The method utilizes OpenPose neural network as a human pose detector module and depth sensing module. The modules work together to extract the body orientation from 2D stereo images. OpenPose is proven to be efficient in detecting human body joints, defined by COCO dataset, OpenPose can detect the visible body joints without being affected by backgrounds or other challenging factors. Adding the depth data for each point can produce rich information to the process of 3D construction for the detected humans. This 3D point’s setup can tell more about the body orientation and walking direction for example. The depth module used in this work is the ZED camera stereo system which uses CUDA for high performance depth computation.
X