Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

2019-11-21
2019-28-2523
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status.
Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

A review on influence of different flushing methods on Material Removal Rate using EDM.

2019-11-21
2019-28-2543
Electrical release machining (EDM), is a material removal procedure whereby a coveted shape is acquired by utilizing electrical releases (sparks). Material is expelled from the work piece by a progression of quickly repeating current releases between cathode and anode, isolated by a dielectric fluid and subject to an electric voltage. At the point when the voltage between the two terminals is expanded, the power of the electric field in the volume between the anodes winds up more prominent than the quality of the dielectric (in any event in a few spots), which separates, enabling current to stream between the two cathodes. This wonder is the equivalent as the breakdown of a capacitor (condenser). Accordingly, material is expelled from the cathodes.
Technical Paper

MOLD IN COLOR DIAMOND WHITE ASA MATERIAL FOR AUTOMOTIVE EXTERIOR APPLICATION

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Aerodynamic analysis of race car using active wing concept.

2019-11-21
2019-28-2395
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18˚ for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters.
Technical Paper

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. Since it is completely closed, it is an adding factor to the drag coefficient of the vehicle. This space can be utilized to capture the wind energy to reduce the drag coefficient and generate electricity. Based on this, the objective of the work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. An active front grill shutters will be used to optimize the aerodynamic drag at different vehicle speeds. Initially the aerodynamic analysis of a basic electric car model is performed and then it is validated with the scaled model by using wind tunnel testing. The modified model with a wind turbine and an active grill shutters is analyzed, considering different parameters such as number of turbine blades, height of wind turbine, angle of attack, vehicle speed (60-120 kmph).
Technical Paper

Aerodynamic analysis of commercial vehicle using active vortex generators concept

2019-11-21
2019-28-2409
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag using Active Grill Shutters and Active Air Dams

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The improved model obtained is then subjected to variations in yaw angle ranging from -18° to +18°. The optimized model is then validated for a scaled down prototype in a wind tunnel.
Technical Paper

Steering and Handling Performance Optimization Through Correlation of Objective - Subjective Parameters and Multi-body Dynamics Simulation

2019-11-21
2019-28-2412
RESEARCH OBJECTIVE: Automobile Industry has driven through the ages with continuous development with innovative technologies and frugal engineering. Expectation of customer is also increasing through the generations. To meet the customer demand for performance and be best in market, OEM needs to deliver best performance of vehicle with cost effective and short development process. Steering and Handling of vehicle is one of major customer touchpoints and needs to be tuned to achieve various conflicting requirements. The objective of this research is to optimize the steering and handling using correlation between three major methods of evaluation. METHODOLOGY: Methodology for optimization of steering and handling performance using correlation between subjective evaluation, objective measurement and multi-body-dynamic simulation is presented.
Technical Paper

Affect of Tyre inflation on Rolling Resistance of Tyre

2019-11-21
2019-28-2415
Rolling resistance refers to the various forms of resistance against driving force when the vehicle is in motion. Several factors contribute to rolling resistance, including wind drag on the car, acceleration resistance generated by inertia force when speeding up, and resistance on the tyres. Tyre inflation pressure plays vital role on Coefficient of Rolling Resistance (RRC) of Tyre consequently vehicle mileage. Low or High tyre pressure is not good for driving comfort, safety of vehicle well as for environment. Petroleum Conservation Research Association ( PCRA ) has taken good initiative in direction to Tyre Star marking based on RRC values of Tyre.
Technical Paper

Paper Title : Connectivity in 2wheeler: Opportunities & Challenges

2019-11-21
2019-28-2437
Abstract: Future of Mobility is mainly driven by 3 main pillar viz Connected , Electrified and Automated Driving. With advancement in Communication Technology supplemented by huge customer Base , Connectivity has proven to deliver better Services to the End-user. The next step in this journey would be to connect the so called “Things” and the Things that we want to connect is the 2 wheeler in the Mobility domain This paradigm shift in the Mobility Landscape is expected to bring plethora of opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment , and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership Methodology: Analysis of OEM and Supplier strategies/approaches and upcoming trends in connectivity and electrification.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

Design analysis of a retrofit system for an electric two wheeler

2019-11-21
2019-28-2482
Two wheelers are the major mode of single transport in the metros of India. They contribute about 70 % of the auto market unit wise. Also it is proved from the research that for per unit energy consumption they contribute more to the environment emission. Conventional IC engine based energy supply unit can be replaced with an electric DC motor with chargeable battery as the energy source for the two wheelers present in the market. In the current research, engine is replaced with the motor, batteries and controller. The above system is placed on the space emptied by the conventional engine, The design developed is tested on different gradients for identifying the motor torque for minimum and maximum resistances available on the road. The paper provides an insight on the of the torque requirements based on variable resistances required for two wheelers. Also the system will be used as a retrofit for the existing IC engine bikes to be converted in electric bikes.
Technical Paper

Changes in user experiences of electric vehicles

2019-11-21
2019-28-2489
Research Objective The objective of the paper is to research what are the changes in experiences being brought about due to the advent of Electric Vehicles (EVs). EVs are silent, have less complex propulsion system, and have free space under the hood, amongst other things. Each change brings about both good and bad experiences across the spectrum of users. Some of the bad experiences can be safety incidents leading to death as well. Researching the areas that are harmful to end users, including pedestrians, will be our focus area. Methodology Our methodology will look at the changes at the vehicle architecture level which are inherent to the EV design. Research how are the experiences so far due to these changes. Are these just inconveniences or safety hazards? EVs have excellent NVH characteristics. A farmer may love a silent tractor, but a racing enthusiast may not like a relatively silent sports car.
Technical Paper

Impact of wheel-housing on aerodynamic drag and effect on energy consumption on an electric bus body

2019-11-21
2019-28-2394
Role of Wheel and underbody Aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an Electric Bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

2019-11-21
2019-28-2423
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained.
X