Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS9100D Internal Auditor Training

2024-10-28
Internal audits are a requirement of the AS9100, AS 13100 and RM 13005 and are intended to verify the compliance and effectiveness of an organization's quality management system. The methods and techniques for performing internal audits have significantly changed in the aviation, space and defense industries, and internal auditors must be knowledgeable of these requirements and the expectations as identified in the standard.
Training / Education

Vehicle Crash Reconstruction Principles and Technology

2024-09-17
Crash reconstruction is a scientific process that utilizes principles of physics and empirical data to analyze the physical, electronic, video, audio, and testimonial evidence from a crash to determine how and why the crash occurred. This course will introduce this reconstruction process as it gets applied to various crash types - in-line and intersection collisions, pedestrian collisions, motorcycle crashes, rollover crashes, and heavy truck crashes. Methods of evidence documentation will be covered. Analysis methods will also be presented for electronic data from event data recorders and for video.
Training / Education

Aircraft Cabin Safety and Interior Crashworthiness

2024-07-23
This two-day course will begin with a discussion of commercial off the shelf (COTS) test requirements.  The instructor will then guide participants through the various cabin interior emergency provisions and their requirements such as supplemental passenger oxygen, emergency equipment, seats, flammability, emergency exits, emergency lighting and escape path markings, and various other cabin interior systems.  
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Aircraft Weather Data Representation and Threat Management for Connected Weather Applications

2024-06-01
2024-26-0439
Aviation industry has been continuously striving for reducing the number of flight crew in the aircraft cockpit for balancing operational efficiency with the flight economics. Concepts like Reduced Crew Operations (RCO) and Single Pilot Operations (SPO) are being experimented in this direction. In RCO and SPO, additional aid/system is needed for reducing the pilot’s workload and to help him/her in taking right decisions. Weather situational awareness and management of weather-related threats are significant part of the workload the pilot is subjected during the flight. Weather information presented to the pilot in the cockpit is obtained either from an onboard weather radar on larger commercial aircrafts or from other sources like Air Traffic Control, ADS-B Flight Information Services, Connected weather services, etc.
Technical Paper

Enhancing Sustainable Aviation through Contrail Management – A Framework for Multiple Platforms

2024-06-01
2024-26-0444
Effective contrail management while ensuring operational and economic efficiencies for flight services is essential for providing services with minimal adverse environmental impact. The paper explores various aspects of contrail management applicable to different platforms such as Unmanned vehicles, Commercial airliners and Business & regional jets. The aspects unique to each platform such as flight levels of operation, fuel types, flight endurance and radius of operation have been analyzed. Expanse of 5G network is resulting in increased flight activity at flight levels not envisaged hitherto. The paper also dwells on the ramifications of the increased proliferation of different platforms at newer flight levels from the perspective of contrail management.
Technical Paper

CFD Methodology Development to Predict Lubrication Effectiveness in Electromechanical Actuators

2024-06-01
2024-26-0466
Electromechanical actuators (EMAs) play a crucial role in aircraft electrification, offering advantages in terms of aircraft-level weight, rigging and reliability compared to hydraulic actuators. To prevent backdriving, skewed roller braking devices called "no-backs" are employed to provide braking torque. These technology components are continuing to be improved with analysis driven design innovations eg. U.S. Pat. No. 8,393,568. The no-back mechanism has the rollers skewed around their own transverse axis that allow for a combination of rolling and sliding against the stator surfaces. This friction provides the necessary braking torque that prevents the backdriving. By controlling the friction radius and analyzing the Hertzian contact stresses, the brake can be sized for the desired duty cycle. No-backs can be configured to provide braking torque for both tensile and compressive backdriving loads.
X