Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Bounce-Overs: Fixed Object Impacts Followed by Rollovers

2004-03-08
2004-01-0334
In this study, U.S. crash data was analyzed to better understand bounce-over rollovers. Crash data was reviewed to evaluate the distribution of bounce-over crashes and injuries, initiation objects and impact locations. In passenger cars, bounce-over crashes account for 8.4% of rollovers but involve 36.2% of the seriously injured belted drivers. Most bounce-overs are initiated by contact with narrow objects such as a pole, tree or barrier, or large objects such as a ditch or embankment. Contact often occurs in the front of the vehicle. After contact, the vehicle yaws and rolls, and serious injuries are often sustained to the head. Based on field data, a laboratory test was developed to simulate a narrow object bounce-over. The test consists of towing a vehicle laterally on a fixture towards a stationary, angled barrier resting in gravel. The moving fixture is decelerated and the vehicle is released. The vehicle front impacts the edge of the barrier, simulating a narrow object impact.
Technical Paper

High Retention Seat Performance in Quasistatic Seat Tests

2003-03-03
2003-01-0173
A new generation of seats has been designed to specifications for high retention (HR) in a Quasistatic Seat Test (QST). The QST involves occupant loading of the seat in a rearward direction and targets peak H-point moment to >1700 Nm giving an energy transfer capability of 2000 J. QST tests from 1998-2000 were compared to results from pre-HR seat designs of the late 1980s and early 1990s to determine performance improvements. Twenty-seven QST tests of HR seats were randomly selected from a larger series and were evaluated for strength and seat deformation under occupant loading. They represented 20 different seat types from four suppliers. Averages and standard deviations in QST results were computed. In addition, eight repeat tests were conducted with one seat to determine repeatability of the QST. These data were compared to an earlier repeatability study of the 1994 W pre-HR seat, which was evaluated at two facilities.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
X