Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Field Data Study of the Effect of Knee Airbags on Lower Extremity Injury in Frontal Crashes

2021-04-06
2021-01-0913
The lower extremity (LEX) is the most frequently injured body region in frontal crashes, and moderate to severe injuries to this region can lead to a reduction in quality of life. Knee airbags (KABs) are one countermeasure in newer vehicles that could influence LEX injury. To determine the effect of KABs on LEX injury for drivers in frontal crashes, the analysis examined moderate to severe LEX injury (AIS 2+) using field data from two sources. Logistic regression included six main effect factors (KAB deployment, BMI, age, sex, belt status, and intrusion to the driver-side instrument panel/toe pan/floor pan). Eighty-five cases with KAB deployment from the Crash Injury Research and Engineering Network (CIREN) database were supplemented with 8 cases from the International Center for Automotive Medicine (ICAM) database and compared to 289 CIREN non-KAB cases. All cases evaluated drivers in frontal impacts (11 to 1 o’clock PDOF) with known belt use in 2004 and newer model year vehicles.
Technical Paper

Validation of EEPROM Chip Removal and Reinstallation for Retrieval of Electronic Crash Data – Destructive and Non-Destructive Methods

2021-04-06
2021-01-0907
As a result of trauma to the circuit board or other damage to an airbag control module, electronic crash data recorded onto a passenger vehicle’s electronically erasable programmable read-only memory (EEPROM) chip may be inaccessible by traditional imaging methods and techniques, such as through a diagnostic link connector (DLC) or accessing the data direct from the airbag control module. Despite the potential damage to the subject module, electronic crash data may still be present on the module’s EEPROM chip. This paper explores and validates a methodology for the removal and reinstallation of a subject EEPROM chip using an identical undamaged exemplar airbag control module to gain access to the subject electronic crash data. An airbag control module from a 2015 Toyota Corolla was imaged. A chip swap was then performed on the subject airbag control module. The subject EEPROM memory chip was removed from the subject module, and installed into an identical, undamaged surrogate module.
Standard

SAE Child Passenger Safety Glossary

2021-02-02
WIP
J2939
To develop a comprehensive list of terms and definitions to facilitate clearer and more consistent consumer information.
Standard

Occupant Restraint Dynamic System Evaluation - Frontal Impact Heavy Trucks

2020-11-09
CURRENT
J2418_202011
This SAE Recommended Practice describes the test procedures for conducting frontal impact restraint tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Standard

Event Data Recorder - Compliance Assessment

2020-09-29
CURRENT
J1698/3_202009
This SAE Recommended Practice defines procedures intended to be used to validate that relevant EDR output records conform within specified limits to measured sensor input to the device.
Journal Article

Side Airbags Deployment Range from Analysis of Event Data Recorder Database of Real-World Incidents

2020-07-21
Abstract One of the techniques that accident reconstructionists and experts utilize to define the severity of an accident is based on the airbag deployment thresholds. As such, if during an event, the airbags did not deploy, it is concluded that the threshold could be considered as the upper bound for the forces and the accelerations that the vehicle experienced as a result of the impact. The National Highway Transportation Safety Administration (NHTSA) provides a database based on their investigations on motor vehicle accidents in which some of these investigations involved imaging the airbag control module (ACM) data. NHTSA made these data publicly available. The goal of this study was to analyze the event data recorder (EDR) data from these real-world incidents with a focus on the events in which vehicles’ side airbags were deployed as a result of the impacts and determine the lower-bound side airbag deployment thresholds during real-world cases.
Technical Paper

Further Non-Deployment and Deployment Laboratory Experiments Using a Toyota Auris 2007 Event Data Recorder

2020-04-14
2020-01-1329
The experimental campaign discussed in publication 2019-01-0635 was extended to emulate more vehicle parameters and also to increase severity leading to deployment event. The engine speed (RPM) and Accelerator Pedal Position (APP) were emulated using LabVIEW and added to the previously reported emulated parameters of wheel speeds and brake status. Overlapping non-deployment events were generated and the EDR data is presented enriched with additional (faster) CAN bus data sniffed from the vehicle harness. While the non-deployment events were still generated using the rubber mallet in pendulum configuration as in 2019-01-0635, a series of tests were performed using an Izod pendulum to incrementally increase event severity until deployment event was generated. The Izod pendulum was instrumented with a rotational potentiometer to measure its instantaneous angle while laboratory accelerometers were used to separately measure acceleration.
Technical Paper

Structural Analysis and Design Modification of Seat Rail Structures in Various Operating Conditions

2020-04-14
2020-01-1101
This paper is based on, and in continuation of the work previously published in ASEE NCS Conference held in Grand Rapids, MI [1]. Automotive seating rail structures are one of the key components in the automotive industry because they carry the entire weight of passenger and they hold the structure for seating foams and other assembled key components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions, should be able to withstand the weight of the passenger along with the other assembled parts as mentioned above. Also, functional requirements such as crash safety is very important to avoid or to minimize injuries to the occupants.
Journal Article

Innovative Active Head Restraint System in a Car: Safety Assessment with Virtual Human Body Model

2020-04-14
2020-01-0979
The aim of this study is to use numerical simulations for safety assessment of an innovative active head restraint system. This system was developed to protect the head and neck of an occupant in a car without a head airbag during a side impact. Its FE model is created and embedded it in a model of a small car with a side airbag. The dynamics of the head restraint activation are also taken into account. The virtual human body model Virthuman is used to represent occupants. The model is scaled for pre-selected human individuals to cover large numbers of occupants of different sizes. It extends conventional virtual evaluation of new safety designs via existing pre-defined mono-purpose side dummies and their FE models. The benefit of the head restraint system is evaluated in side impact scenarios inspired by the pole tests performed by EuroNCAP. Transversal impacts to a pole at 29 and 32 km/h are considered at 90° and 75° angles from driver and the opposite side.
Technical Paper

Evaluation of Corpuscular Particle Method (CPM) in LS-DYNA for Airbag Modeling

2020-04-14
2020-01-0978
This paper presents a systematic study to assess maturity of Corpuscular Particle Method (CPM) to accurately predict airbag deployment kinematics and its overall responses. The study was performed in three phases: (1) a correlation assessment of CPM predicted inflator characteristics to closed tank tests; (2) a correlation assessment of CPM predicted airbag deployment kinematics, airbag pressure, reaction force from a static deployment of a Driver Airbag (DAB) and (3) a correlation prediction of the impactor force by CPM versus impactor force from physical drop tower tests. These studies were repeated using the Uniform Pressure Method (UPM), to compare the numerical methods for their accuracy in predicting the physical test, computational cost, and applicability. Results from the study suggest that CPM satisfies the fundamental energy laws, and accurately captures the realistic airbag deployment kinematics, especially during the early deployment stage, unlike UPM.
Technical Paper

The Effects of Small Seat Swiveling Angles on Occupant Responses during a Frontal Impact

2020-04-14
2020-01-0571
In highly automated vehicles (HAVs), new seat configurations may be desirable to allow occupants to perform new activities. One of the current HAV concepts is the swiveled seat layout, which might facilitate communication between occupants. The main objective of this study was to investigate the effects of seat swiveling angles on occupant kinematics and injury risk predicted by a Human Body Model (HBM) during a frontal impact. A detailed 50th percentile male HBM (GHBMC M50-O) was subjected to two frontal crash pulses in a sled setup. The model was positioned on a semi-rigid seat and restrained using a pre-inflated airbag and a three-point seatbelt. Simulations included four seat swiveling angles (0, -10, -20, and -30 degrees), three occupant positions (Sedan driver, large VAN driver or Laptop user), two airbag initial locations (nominal or matching the head Y location), and the inclusion of lateral supports on the seat pan.
Journal Article

Evaluation of General Motors Event Data Recorder Performance in Semi-Trailer Rear Underride Collisions

2020-04-14
2020-01-1328
The objective of this study was to analyze the validity of airbag control module data in semi-trailer rear underride collisions. These impacts involve unusual collision dynamics, including long crash pulses and minimal bumper engagement [1]. For this study, publicly available data from 16 semi-trailer underride guard crash tests performed by the Insurance Institute for Highway Safety (IIHS) were used to form conclusions about the accuracy of General Motors airbag control module (ACM) delta-V (ΔV) data in a semi-trailer rear underride scenario. These tests all utilized a 2009 or 2010 Chevrolet Malibu impacting a stationary 48’ or 53’ semi-trailer at a speed of 35 mph. Nine tests were fully overlapped collisions, six were 30% overlapped, and one was 50% overlapped [2]. The IIHS test vehicles were equipped with calibrated 10000 Hz accelerometer units. Event Data Recorder (EDR) data imaged post-accident from the test vehicles were compared to the reference IIHS data.
Technical Paper

Accident Statistical Distributions from NASS CDS - An Update

2020-04-14
2020-01-0518
The National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) contains an abundance of field crash data. As technology advances and the database continues to grow over the years, the statistical significance of the data increases and trends can be observed. The purpose of this paper is to provide a broad-based, up-to-date, reference resource with respect to commonly sought-after crash statistics. Charts include up-to-date crash distributions by Delta-V and impact direction with corresponding injury severity rates. Rollover data is also analyzed, as well as historical trends for injury severity, belt usage, air bag availability, and the availability of vehicle safety technology.
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
Technical Paper

Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and Recommendations

2020-03-31
2019-22-0012
Several studies, available in the literature, were conducted to establish the most relevant criterion for predicting the thoracic injury risk on the THOR dummy. The criteria, such as the maximum deflection or a combination of parameters including the difference between the chest right and left deflections, were all developed based on given samples of Post Mortem Human Subject (PMHS). However, they were not validated against independent data and they are not always consistent with the observations from field data analysis. For this reason, 8 additional PMHS and matching THOR tests were carried out to assess the ability of the criteria to predict risks. Accident investigations showed that a reduction of the belt loads reduces the risk of rib fractures. Two configurations with different levels of force limitation were therefore chosen. A configuration representing an average European vehicle was chosen as a reference.
Technical Paper

Investigating Combined Thoracic Loading Using the Elderly Female Dummy (EFD)

2020-03-31
2019-22-0017
The Elderly Female Dummy (EFD) is an omni-directional ATD developed to represent a vulnerable population. The EFD it is able to be 3D printed and quickly altered to meet design requirements. A recent side impact sled test series suggested that small, elderly females may be at risk of thoracic injuries in side impact crashes due to combined loading from the belt pre-tensioner and side airbag. The EFD was altered to add four IR-TRACCs to the thoracic region to allow both x-axis and y-axis displacement to be evaluated in a similar test. While the IR-TRACCs did record the displacement due to combined loading, the rate of displacement and timing of the peak displacements did not match external chestband outputs. The next step for the EFD is to revise the locations of IRTRACCs in the thorax and begin component testing in lateral and frontal directions to improve thoracic biofidelity.
Technical Paper

Passenger Injury Analysis Considering Vehicle Crash after AEB Activation

2020-03-31
2019-22-0023
Owing to an increasing autonomous emergency braking (AEB) adoption, emergency braking before crash occurs more often than in the case of conventional vehicles. Due to the sudden deceleration in AEB activation, passengers move forward before the crash. To explore how this forward movement affects passenger injury, sled tests are performed with an inclined dummy representing forward displacement. The test shows that a shorter distance between the airbag and passenger results in bigger neck injuries induced by airbag deployment force. A countermeasure is suggested to prevent neck injury in emergency braking situation by reducing deployment force and protrusion.
Technical Paper

Implementation, Improvement and Statistical Validation of Scoring by Milling Process on an Instrument Panel with In-Mold Grain Lamination

2020-01-13
2019-36-0155
This paper starts describing the in-mold grain lamination and bilaminated film cover when applied to instrument panels with seamless passenger air bag doors. It then offers a comparison between two different PAB door weakening processes, the laser scoring and the scoring by milling. It further discuss the scoring by milling process and analyses its implementation on a real case instrument panel. In the implementation case, the scoring pattern is checked against a pre-defined engineering specification and correlated to the results of a drop tower test, which shows the force necessary to break the PAB door. Three iterations are performed until the results for scoring pattern and breaking force are achieved. The breaking force results are then statistically validated against the specification and capability analysis.
Technical Paper

Injury Reduction in Vehicle to Pedestrian Collision Using Deployable Pedestrian Protection System in Vehicles

2019-11-21
2019-28-2551
Head injuries are the main source of road fatalities when a pedestrian or other vulnerable road user (VRU) such as cyclist or motorcyclist is involved in an accident with the approaching high speed vehicle. The frontal part of a car such as engine hood (bonnet), lower-windshield area and A-pillars are the possible location of head impact in these accidents. The head impact with hard points located in these areas may result in the fatal head injuries. The effect of impact can be reduced by using the deployable pedestrian protection systems (DPPS) such as pop-up hoods and windshield airbag in the vehicle. The study indicates how these systems are effective in reducing the fatalities in pedestrian accidents and how to evaluate the performance of these deployable systems. The pedestrian & VRU road fatalities contribute to more than 33percent of total road fatalities in India.
Standard

Recommended Practice for Optimizing Automobile Damageability and Repairability

2019-10-24
CURRENT
J1555_201910
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
X