Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

Investigation of Hybrid Polyamide Composites for Replacement of Metallic Parts

2020-09-25
2020-28-0423
Over the past few decades, the world is looking for a better replacement option for metals. Polymers with reinforcements are finding their way deep inside in most of the engineering application because of its lightweight and superior properties. The aim of this study is to investigate hybrid polymer composite polyphthalamide (PPA) reinforced with glass fibre and Poly tetra fluro ethylene. The reinforcement was varied as 10, 20, 30wt% of Glass Fibre, while fixed quantity of Poly tetra fluro ethylene (PTFE) as 5wt % was taken for hybrid composites preparation. The virgin and hybrid composite specimen were prepared under optimal process parametric conditions through the use of injection moulding techniques and test samples were produced as per ASTM standards. The response of physical properties such as density and various Mechanical testing like Hardness, Tensile Strength, impact and flexural test were carried out and noted.
Technical Paper

Experimental investigation on Biogas Production from Waste Press Mud and Cow Dung under Anaerobic Condition

2020-09-25
2020-28-0467
Anaerobic digestion of textile wastes under mesophilic conditions were conducted in batch mode with aim of investigating the bio-methane evolution with an initial solid mass of cow dung – 2 kg, cotton and water in 3:1 ratio and press mud is use in the ratio 3:1 with water were evaluated subsequently for 7 weeks (42 days).The highest production of biogas is noted as 3 m3 in fourth week and the higher production of biogas due to press mud is noted as 0.49 in the fifth week.Carbon dioxide is produced as bi product in this bio digestion process. Highest production rate of methane,biogas and carbon dioxide are in their fourth week. Through this experiment 65%-75% of bio gas is collected by the fourth week.
Technical Paper

A Study of the Effect of Electronic Fuel Injection on the CFR F5 Cetane Rating Engine

2020-09-15
2020-01-2115
At recent American Society for Testing and Materials (ASTM) Subcommittee D02.01 meetings, committee members and attendees from the petroleum industry have expressed a longstanding desire to see precision improvements to ASTM D613 Standard Test Method for Cetane Number of Diesel Fuel Oil. The existing ASTM D613 precision limits were calculated using ASTM National Exchange Group (NEG) monthly test data from the mid-1970s through the early 1990s. Over the past few decades, many detailed studies were performed to identify and better understand the shortcomings of the cetane method (both engine equipment and instrumentation). Many of these studies concluded that inconsistent combustion is the main contributing factor behind the lack of precision in the cetane number method, followed by shortcomings in the instrumentation used to measure ignition delay.
Technical Paper

Numerical Investigation on GDI Spray Under High Injection Pressure Up to 100MPa

2020-09-15
2020-01-2108
In recent years the increase of injection pressure gasoline fuel is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneities with ultra-high injection pressure values up to 100MPa. The increase of the fuel injection pressure meets the demand for increased injector static flow, while simultaneously improving the spray atomization and mixing characteristics that provide improvement of the combustion performance of GDI homogeneous systems. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution.
Technical Paper

Fuel Effects on Regulated and Unregulated Emissions from Three Light-Duty Euro 5 and Euro 6 Diesel Passenger Cars

2020-09-15
2020-01-2147
Substantial advances in European road vehicle emissions have been achieved over the past 3 decades driven by strengthening revisions in emissions legislation and enabled by advances in fuel and vehicle engine and emissions control technologies. As both vehicle technology and emissions legislation in Europe continue to evolve, Concawe has conducted a study to examine the opportunities that fuels can provide to further reduce emissions from light-duty Diesel passenger cars. Three European diesel cars spanning Euro 5, Euro 6b and Euro 6d-TEMP emissions certification levels have been tested over cold-start WLTC cycles with 6 fuels: an EN590-compliant B5, a bio-derived EN15940-compliant paraffinic diesel, a 50:50 blend of the aforementioned fuels, a low density petroleum-derived B5, a B30 and the same B30 additized with a high dose of cetane number improver.
Technical Paper

Effect of Jet-Jet Angle on Combustion Process of Diesel Spray in an RCEM

2020-09-15
2020-01-2058
The effects of jet-jet angle on the combustion process including the lift-off length and the liquid length of diesel spray were investigated in a rapid compression and expansion machine (RCEM). Experiments were carried out using an optical accessible RCEM equipped with an irregular six-hole nozzle having jet-jet angle of 30 degrees and 45 degrees under various injection conditions and various intake oxygen conditions. High-speed OH* chemiluminescence imaging and direct photo imaging with Mie scattering method were used to capture the transient evolution of the spray flame including lift-off length and liquid length. The RCEM operated at 1200 rpm. The injection timing was -4 deg ATDC, and the in-cylinder pressure and temperature were 6 MPa and 780 K at the injection timing, which achieved short ignition delay.
Technical Paper

Particulate Contamination in Biodiesel Fuel under Long-Term Storage

2020-09-15
2020-01-2143
Many incidents associated with filter plugging have extensively been reported in microbially contaminated diesel and biodiesel fuel systems, especially under long term storage conditions. In this study a quantitative assessment of the undesirable insoluble solids produced in contaminated biodiesel fuels was carried out in order to evaluate their evolution rate during biodeterioration. For this purpose, a series of contaminated biodiesel fuel microcosms were prepared and stored for six months under stable conditions. The quantity of the particulate contaminants was monitored during storage by a multiple filtration method which was followed at the end by a comparison with the active bioburden per ATP bioluminescence protocol. Additional similar microcosms were treated with a commercially available biocide in order to examine the latter’s activity both on solids formation and the microbial proliferation.
Technical Paper

A System and Method to Determine Soak Time

2020-09-15
2020-01-2016
In a competitive engineering business world, there is a constant push to meet stringent Emissions and on board diagnostic regulations in a cost-effective manner. Engineers are tasked with the responsibility to innovate and design solutions around these cost-cutting measures. Varied features in commercial ASIC devices make it more challenging to create consistent engineering design methods to provide critical inputs for controls and diagnostic strategies. In addition, continuous evolution of the emissions and OBD regulations in the different markets makes it challenging for ASIC design manufacturers to evolve their hardware designs very quickly. One such input is soak time. Soak Time is typically defined as the amount of time the engine has been turned off. Emission controls and OBD I and OBD II algorithms use soak time to enable cold and hot start processing strategies There are many methods and patents that describe how soak time can be measured.
Technical Paper

Comparison of the Effects of Different Biofuel on the Oxidation Stability of a Hydrocarbon Fuel

2020-09-15
2020-01-2101
Oxidation stability of fuels is a major issue in the fields of transport and energy. It is indeed crucial that fuels remain stable over their entire chain of use, from storage to combustion. The oxidation of liquid fuels leads to a fundamental modification of their chemical and physical structures, which leads to safety issues and engine malfunction. Understanding and controlling the auto-oxidation of fuels is therefore a crucial issue in the petroleum, automotive and aeronautical industries. The increase in the share of biofuels in the transport sector leads to many questions about their impact on the oxidation stability of conventional fuels. A large number of molecules from different biomass sources are proposed in the literature. If the impact of biodiesel and ethanol on diesel and gasoline fuels oxidation stability has been probed in the literature, the effect of other types of biofuels on conventional fuels remains unexplored.
Technical Paper

The Tribological Behavior of the DLC-Coated Engine Surfaces Lubricated with Oils with Nanoadditives - a Review

2020-09-15
2020-01-2159
Nowadays, it is commonly strived to achieve the highest efficiency of internal combustion engines and the longest possible inter-repair millage conditioned by low wear of engine components. This needs the reducion of the frictional resistance and wear intensity for the mating surfaces of engine components. This is commonly achieved by using the right oil, its additives and coating the surface with protective layers. Various nanoparticles, such as TiO2, ZrO2, CuO can be added to the base oil to change lubricating properties and creating so-called nano-oils. Parallelly, mating engine surfaces are often covered with very thin DLC coatings. Lubrication of DLC-coating surfaces with nano-oil can create both positive and negative synergy effects.
White Paper

Digital Standards Systems—An Integrated Approach to Engineering Standards Usage

2020-07-21
WP-0013
Industry standards are key enablers in helping businesses around the meet regulatory requirements, keep costs down, gain market access, and instill consumer confidence. SAE International, a standards development organization (SDO) critical to the transportation industry, works in partnership with industry to develop and distribute standards important in automotive and aerospace product development, product performance, and quality management. Historically, industry standards were formatted with the intention of being distributed in print. This changed with the evolution of new electronic formats, and now most standards are available in PDF or EPUB. While progressive at the time, these formats are now proving inadequate due their optimization for readability by the human eye versus consumption by electronic endpoints.
X