Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Analysis on the Effects of Passive Prechambers on a Small 2-Stroke Low-Pressure Direct Injection (LPDI) Engine

2020-10-30
2020-32-2305
Two-stroke (2S) engines still play a key role in the global internal combustion engine (ICE) market when high power density, low production costs, and limited size and weight are required. However, they suffer from low efficiency and high levels of pollutant emissions, both linked to the short circuit of fuel and lubricating oil. Low- and high-pressure direct injection systems have proved to be effective in the reduction of fuel short circuiting, thus decreasing unburnt hydrocarbons and improving engine efficiency. However, the narrow time window available for fuel to be injected and homogenized with air, limited to few crank-angles, leads to insufficiently homogenized fuel-air mixtures and, as a consequence, to incomplete combustions. The use of prechambers can be a well-suited solution to avoid these issues.
Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Diesel-Water Emulsion and Water Fumigation in a Small Bore Diesel Engine

2020-10-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The water to diesel ratio was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. A stable water-diesel emulsion was prepared using a combination of equal proportions (1:1 by volume) of Span 80 and Tween 80. The mixture of Span 80 in diesel and Tween 80 in water was homogenized using an IKA Ultra Turrax homogenizer with tip stator diameter 18mm at 5000 rpm for 2 minutes. The water-in-diesel emulsions thus formulated were kinetically stable and appeared translucent. No phase separation was observed on storage for approximately 105 days.
Technical Paper

Lubricating Oil Droplets from Piston Crown on Abnormal Combustion in Supercharged SI Engine

2020-10-30
2020-32-2302
In recent years, the supercharged spark ignition engine (SI engine) is spread out in the field of passenger vehicle. However, it has a problem of abnormal combustion which is called Low Speed Pre-ignition (LSPI). It is cleared gradually that the character of lubricating oil effects on LSPI behavior. The lubricating oil which has a tolerance for LSPI has been introduced already in the market nowadays. However, cause and mechanism of LSPI occurrence does not clear sufficiently. In previous conference SETC 2018, it was reported that the peculiar behavior of LSPI corresponded with behavior of lubricating oil from piston crown. This paper focuses on frequency of lubricating oil scattering from piston crown.
Technical Paper

Study on the Effect of Air Density on the Performance of HCCI Engine Using Acetylene Gas as Fuel

2020-10-30
2020-32-2301
Owing to the combined merits of Spark ignition (SI) and compression ignition (CI) engines, homogeneous charge compression ignition (HCCI) engine technology has been receiving a greater attention in the last three decades. HCCI is a promising concept for combustion engines to reduce both emissions and fuel consumption. Utilization of different alternative fuels for HCCI engines is yet to be explored more. In this investigation, an attempt was made to use acetylene as a fuel in an HCCI engine. For this purpose, a single cylinder, four stroke, air-cooled CI engine was converted into HCCI mode. Acetylene was inducted into the intake manifold by using manifold injection technique. Air at different densities was supplied to the HCCI engine. The effects of varying air density on the performance and emission characteristics of the HCCI engine were assessed and the results are presented in this paper
Technical Paper

CFD Simulation Methodology for a Rotary Steam Expansion Piston Engine

2020-10-30
2020-32-2303
In industrial processes, combustion engines and co-generation plants, large amounts of waste heat are generated, which are often lost to the environment. The conversion of this thermal energy into mechanical work and ultimately into electrical power promises a significant improvement in energy utilization, the efficiency of the overall system and, consequently, cost-effectiveness. Therefore, the use of a Rankine Cycle is a well-established technical process. A recent research project investigates a novel expansion machine to be integrated into an RC-process to convert the heat energy into mechanical work. Primarily, the present work deals with the fluid dynamic simulation of this expander, which is based on the principle of a rotary piston engine. The aim is to develop, analyze and optimize the process and the corresponding components. Hence, a CFD model has to be built up, which should correspond as closely as possible to the requirements and geometries of the physical engine.
Technical Paper

Improvement of Quasi-Steady State Heat Transfer Model for Intake System of IC Engines with Considering Backflow Gas Effect Using 1-D Engine Simulation

2020-10-30
2020-32-2315
For improving the thermal efficiency and the reduction of hazardous gas emission from IC engines, it is crucial to model the heat transfer phenomenon starting from the intake system and predict the intake air’s mass and temperature as precise as possible. Previously the authors developed an empirical equation based on an experimental setup of an intake port model of an ICE in order to be implemented into the engine control unit and numerical simulation software for heat transfer calculations. The authors developed an empirical equation based on the conventional Colburn analogy with the addition of Graetz and Strouhal numbers. Introduced dimensionless numbers were used to characterize the entrance region, and intermittent flow effects, respectively.
Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Real-World Application of Variable Pedal Feeling Using an Electric Brake Booster with Two Motors

2020-10-05
2020-01-1645
A new type of electric brake booster, which can control brake pedal feeling completely with software, has been developed to explore how a brake system can be used to differentiate and personalize vehicles. In the future, vehicles may share an increasing amount of hardware and rely more heavily on software to differentiate between models. Car sharing, vehicle subscriptions, and other new business models may create a new emphasis on personalization of vehicles that may be achieved most cost effectively using software. This new brake booster controls brake pedal force and brake pressure independently based on the brake pedal stroke so that the pedal feeling is completely defined by software. The booster uses two electric motors and one master cylinder. One electric motor controls pedal force and provides an assist force that amplifies the force that the driver applies to the brake pedal.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

Topology Optimization of Brake Caliper

2020-10-05
2020-01-1620
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimization algorithm is used to minimize the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

2020-09-30
2020-01-1570
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53ⅹ0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

Analytical Prediction of Acoustic Emissions From Turbocharger Bearings

2020-09-30
2020-01-1504
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions.
Technical Paper

Modelling and Numerical Simulation of the Noise Generated by Automotive Turbocharger Compressor

2020-09-30
2020-01-1512
An effective technology to reduce emission and fuel-consumption is the use of turbochargers. A turbocharger increases the air pressure at the inlet manifold of the engine by using the waste energy from the exhaust gas to drive a turbine wheel that is linked to the compressor through a shaft. Besides the use in combustion engines, fuel cell systems for vehicle applications also need compressed air to achieve high power densities. Thereby, in fuel cell systems the noise emission of turbochargers is no longer masked by the combustion engine. In operation, the main noise sources are generated by the flow in the compressor and the different noise phenomena need to be understood in order to efficiently reduce the emitted noise and increase comfort. A huge potential in order to achieve this goal is a simulation based investigation to study in detail the flow mechanism, the aeroacoustic sources and its sound propagation.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Technical Paper

NVH Comfort of Range Extenders for Electric Vehicles

2020-09-30
2020-01-1551
The most appreciated driving characteristics of electric vehicles are the quietness and spontaneous torque rise of the powertrain. The application of range extenders (REX) with internal combustion engines (ICE) to increase the driving range is a favourable solution regarding costs and weight, especially in comparison with larger battery capacities. However, the NVH integration of a REX is challenging, if the generally silent driving characteristics of electric vehicles shall remain preserved. This paper analyses key NVH aspects for a REX design and integration to fulfil the high expectations regarding noise and vibration comfort in an electric vehicle environment. The ICE for a REX is typically dimensioned for lower power outputs, incorporating a low number of cylinder units, which is even more challenging concerning the NVH integration. It will be explained that sophisticated, innovative technologies are required on component and vehicle side to ensure best possible NVH comfort.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid-frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
X