Refine Your Search

Topic

Author

Affiliation

Search Results

Event

Increasing the efficiency of high-pressure systems in aerospace through 3D metal printing

2020-11-17
Heat exchangers are a prolific application found in all things that concern fluid and power; they are mission-critical applications that affect overall performance in aircraft of all sizes. Yet, for years, heat exchangers have been constrained, by traditional manufacturing, in terms of limited geometric freedom and lengthy lead times. Consider the following • Heat exchangers are commonly fabricated with stainless steel and then gold brazed, which can be extremely costly • Each weld joint costs $100; in traditionally manufactured fuel and high-pressure systems, there could be hundreds of welds • There can be a lack of integration with other systems like electrical motors or conformal cooling with batteries. Assembly integration, testing, and validation are lengthy and difficult. Additive manufacturing (aka 3D printing) has opened new possibilities for thermal conductivity and heat-exchanger design that enable end users to push the limits of what is possible.
Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
X