Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Determination of Diffusion Capability of Oxygen Through Brake Pads From the Surface Towards the Interior

2020-10-05
2020-01-1616
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the brake pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. In previous work from RIMSA, it was observed that iron sulphide had been reacted below the surface of the brake pad, suggesting that tribochemistry does not only take place on the surface. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a peculiar microstructure (rough microstructure) when it becomes oxide that can be recognized easily, making it a good marker.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during the braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

A Study of the Interactions Between Phenolic Resin and Metal Sulphides and their Contribution to PAD Performance and Wear

2020-10-05
2020-01-1600
In order to keep the coefficient of friction stable, some additives such as metal sulphides, are included in the brake pads formulation. Previous work from RIMSA has shown that oxidation temperature range of the metal sulphides can be one of the key properties to explain their contribution to the performance and wear of a PAD. This new work is a step forward in the interpretation of the mechanism of sulphides as chemically active additives in the brake pads. Phenolic resin is the matrix of the brake pads and starts to decompose around 300 ºC in presence of oxygen and temperature. In order to establish a connection on between sulphide oxidation and phenolic resin degradation, several studies based on heat treatment of blends of different metal sulphides (Iron sulphide, Tin sulphide and Composite sulphide) with phenolic resin have been done. Then the material evolution was studied with techniques such as TGA - DSC, XRD, IR and SEM - EDS.
Technical Paper

Rust is not a Must. Improvement of Discs Corrosion Resistance by Tuning of Cast Iron Alloying Elements and Microstructure.

2020-10-05
2020-01-1624
In the last decade, the increasing electrification of road transports has stimulated the look for new braking systems with a high corrosion resistance. This resulted in a fervent research activity behind the development of disc brakes with a reduced corrodibility under demanding tribocorrosive environments. Despite of this, a significant reduction of the cast iron disc corrodibility can be achieved not only by developing variously coated rotors, but also by modulating the intrinsic corrodibility of iron. This can be done by and ad-hoc refining of the cast iron: a) alloying elements concentration; b) microstructure; and c) carbon content and morphology. At this regard, in this contribution, the corrosion properties of a representative ensemble of cast iron specimens are reviewed.
Technical Paper

Toward a Corrosion Proof Braking System

2020-10-05
2020-01-1625
As of today, the corrosion resistance of a braking system is considered as important as the braking performance. This is particularly true when considering the emergent electrification of road transports which requires braking systems with a service life as long as the whole vehicle life [1]. Following this, among brake system manufacturers, the research for corrosion protection strategies is driving the development of new discs and calipers aiming at improving their performance during corrosion (e.g. Neutral Salt Spray Tests) and/or tribo-corrosion tests (e.g. bench testing in corrosive environments). It has been demonstrated [2] that depending on: a) the design of the brake caliper; b) the chosen materials; and c) the adopted protection strategies (painting, anodization, etc.), several galvanic couplings are present within a braking system and could lead to severe corrosive phenomena including pitting and surface diffuse corrosion.
Technical Paper

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon being the most common alloying element. Despite the excellent castability and machinability of AlSix alloys, anodization is often necessary in order to provide to AlSix components the required corrosion resistance or when the braking system has to withstand to severe chloride-rich environments [1]. Even if the anodization process is known for almost 100 years, a continuous research and process optimization can lead to the development of anodic layers with enhanced morphological and electrochemical properties, which enable a prolonged resistance of calipers under endurance corrosive tests (e.g. >1000hours Neutral Spray Tests).
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Research Report

Unsettled Topics on Nondestructive Testing of Additively Manufactured Parts in the Mobility Industry

2020-09-30
EPR2020017
Additive manufacturing (AM) technology, also known as 3D printing, has transitioned from concepts and prototypes to part-for-part substitution and the creation of unique part geometries that can only be made using AM. These AM applications are increasingly present in demanding fields such as medicine and aerospace. Generally, however, the applications are still primarily driven by thermal, stiffness, corrosion, and static loading conditions. In order to move to the next levels of structural significance (durability and damage tolerance), the AM technologies and components will need to reliably demonstrate freedom from inherent discontinuities that degrade durability to the point of preventing consideration in fatigue environments. This also includes freedom from rogue discontinuities that have the same impact on damage tolerance.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

An Active Safety System Able to Counter Aquaplaning, Integrated With Sensorized Tires, ADAS and 5G Technology for Both Human-Driven and Autonomous Vehicles

2020-09-27
2020-24-0019
Autonomous vehicles must guarantee safety in all road conditions, including driving on wet roads. Aquaplaning (or hydroplaning) is a phenomenon known since the beginning of automotive history, never solved by an active safety system. Currently, no countermeasure system on the market is able to effectively counteract aquaplaning: ABS, ESP or TCS are still inefficient in overcoming this situation. Latest statistical data confirm that the higher percentage of accidents, injuries and deaths are caused by wet road conditions. The aquaplaning happens when the water on the road is too much and the tires start to float causing the instantaneous loss of control. Such phenomenon occurs in human-driven vehicles, with the responsibility of the driver, but in autonomous vehicles (e.g. Level 5), the responsibility for the safety depends on the car and the reduction of the speed is not a solution.
Technical Paper

The Effect of Print Orientation and Infill Density for 3D Printing on Mechanical and Tribological Properties

2020-09-25
2020-28-0411
The 3D Printing (3DP) technology due to its greatest strength, resistance to wear and corrosion to oxidizing agents and has good temperature resistance with durable one. The present article describes the effect of print orientation and infill density of 3DP route on mechanical and tribological properties of PETG filament. The 3DP parameters like layer thickness, slicing, speed, feed are kept as constant and by varying the print orientation (X, Y, Z) with infill density (50%, 75%, 100%) was printed to check the effect of it on mechanical and tribological properties like hardness, impact strength, ultimate tensile strength, flexural strength, wear rate and coefficient of friction. The results shows that all the tested mechanical and tribological properties increase by around 30-60% when the orientation is in the X direction at infill density of 100%.
Technical Paper

Investigation of Hybrid Polyamide Composites for Replacement of Metallic Parts

2020-09-25
2020-28-0423
Over the past few decades, the world is looking for a better replacement option for metals. Polymers with reinforcements are finding their way deep inside in most of the engineering applications because of its lightweight and superior properties. The aim of this study is to investigate hybrid polymer composite polyphthalamide (PPA) reinforced with glass fiber and Poly tetra fluro ethylene. The reinforcement was varied as 10, 20, 30wt. % of Glass Fibre, while the fixed quantity of Poly Tetra Fluro Ethylene (PTFE) as 5wt. % was taken for hybrid composites preparation. The virgin and hybrid composite specimen were prepared under optimal process parametric conditions through the use of injection moulding techniques and test samples were produced as per ASTM standards. The response of physical properties such as density and various Mechanical testing like Hardness, Tensile Strength, and impact strength were carried out and noted.
Technical Paper

Hot Corrosion Demeanour of Key-Hole Plasma Arc Welded Aerospace Grade Hastelloy X in Molten Salts Environment

2020-09-25
2020-28-0422
The current work investigates the hot corrosion demeanour of Hastelloy X weldment produced with autogenous mode through key-hole plasma arc welding (K-PAW). The hot corrosion test has been performed for weldment in molten salt-1 (MS-1) (75 % Na2SO4 + 25 % V2O5) and molten salt-2 (MS-2) (75 % Na2SO4 + 20 % V2O5 + 5 % NaCl) circumstance for 25 hrs (25 cycles) at 900 °C. The MS-1 substrate of both base metal and weldment provided the lowest weight gain than the MS-2 substrate. The NaCl in the MS-2 causes severe hot corrosion on the substrate, whereas the absence of NaCl in MS-1 reduces the hot corrosion effects. The highest parabolic constant is observed for K-PAW weldment in MS-2 condition. The tendency of hot corrosion rate follows the order of, Base Metal MS-1 < K-PAW MS-1 < Base Metal MS-2 < K-PAW MS-2. The occurrence of protective phases like chromium oxides (Cr2O3), spinel oxides (NiCr2O4 and NiFe2O4) Nickel oxide (NiO) on the substrate resist the further oxidation.
Technical Paper

Investigation of Wear and Corrosion Behavior of Aluminum Metal Matrix Composites for Automotive Applications

2020-09-25
2020-28-0461
This research is an attempt to investigate the possibility of enhancing wear and corrosion behaviour of aluminium alloy and composites for high-temperature applications. The 319 alloys with minor additions of Ni, Ti and Fe elements using the liquid metallurgy technique, Al-Si-Cu-Mg matrix alloy (Al alloy) was obtained and it was used as a base alloy and it is reinforced with Silicon carbide (SiC), Magnesium oxide (MgO) under the following composites, namely Al alloy/3wt % MgO (AA-SRM), Al alloy/ 3wt % SiC (AA-SRS) and Al alloy/3wt %SiC-3wt % MgO (AAHRSM) using a stir casting route. The wear test was investigated under the following factors, namely constant sliding velocity 3.21 m/s, sliding distance up to 10000 m under different loadings (4.9, 9.8, 14.7, 19.62, and 24.5 N) using wear test by a pin on the disc test rig. The wear rate was calculated using the tested samples under different loadings, sliding distance, and weight concentration conditions.
X