Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applying Automotive EDR Data to Traffic Crash Reconstruction

2024-10-22
EDR's were first installed in 1994 and are now installed in 99% of new light vehicles sold in the US. In the US EDR’s are not required, but vehicles with EDR’s made after 9/1/2012 must meet minimum standardized content requirements of 49 CFR, Part 563 including speed, throttle, brake on/off and Delta V.  Data must be retrievable with a publicly available tool.  Only a few manufacturers install EDR’s worldwide currently, but the EU and China are adopting regulations to require them in the next few years.  
Training / Education

Fundamentals of GD&T ASME Y14.5 - 2018 Foundational Level

2024-10-22
The 2-day foundational-level Fundamentals of GD&T course teaches the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2018 Standard. The class offers an explanation of geometric tolerances, including their symbols, tolerance zones, applicable modifiers, common applications, and limitations. It explains Rules #1 and #2, the datum system, form and orientation controls, tolerance of position (RFS and MMC), runout, and profile controls. Newly acquired learning is reinforced throughout the class with more than 130 practice exercises, including more than 60 application problems. 
Training / Education

Fundamentals of GD&T ASME Y14.5 - 2009 Foundational Level

2024-09-24
The 2-day foundational-level Fundamentals of GD&T course teaches the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2009 Standard. The class offers an explanation of geometric tolerances, their symbols, tolerance zones, applicable modifiers, common applications, and limitations. It explains Rules #1 and #2, form and orientation controls, the datum system, tolerance of position (RFS and MMC), runout, and profile controls. Newly acquired learning is reinforced throughout the class with more than 80 practice exercises. 
Training / Education

Vehicle Crash Reconstruction Principles and Technology

2024-09-17
Crash reconstruction is a scientific process that utilizes principles of physics and empirical data to analyze the physical, electronic, video, audio, and testimonial evidence from a crash to determine how and why the crash occurred. This course will introduce this reconstruction process as it gets applied to various crash types - in-line and intersection collisions, pedestrian collisions, motorcycle crashes, rollover crashes, and heavy truck crashes. Methods of evidence documentation will be covered. Analysis methods will also be presented for electronic data from event data recorders and for video.
Training / Education

Vehicle Architecture for Hybrid, Electric, Automated, and Shared Vehicle Design

2024-09-10
Electric and hybrid vehicle engineers and designers are faced with the important issue of how to adequately configure required powertrain system components to achieve needed performance, occupant accommodation, and operational objectives. This course enables participants to fully comprehend vehicle architectural/configurational design requirements to enable efficient structural design, effective packaging of required components, and efficient vehicle performance for shared and autonomous operation. The importance of integrating these design requirements with specific vehicle user needs and expectations will be emphasized.
Training / Education

Injuries, Anatomy, Biomechanics & Federal Regulation

2024-09-09
Safety continues to be one of the most important factors in motor vehicle design, manufacturing, and marketing.  This course provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this course enables participants to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
Training / Education

Photogrammetry and Analysis of Digital Media

2024-08-28
Photographs and video recordings of vehicle crashes and accident sites are more prevalent than ever, with dash mounted cameras, surveillance footage, and personal cell phones now ubiquitous. The information contained in these pictures and videos provide critical information to understanding how crashes occurred, and  analyze physical evidence. This course teaches the theory and techniques for getting the most out of digital media, including correctly processing raw video and photographs, correcting for lens distortion, and using photogrammetric techniques to convert the information in digital media to usable scaled three-dimensional data.
Training / Education

System Engineering and Strategic Program Management for the Aviation Industry

2024-08-27
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). The course directly addresses improved aircraft system design tools and processes, which, when implemented will significantly contribute to simpler, lower cost and even safer airplanes that meet customer quality demands. Adding value to the high-leveraged area of design (reducing design by involving manufacturing) — which is what this course does — can start to reverse the current trend (overrun and long delay) and help aircraft companies be more profitable. 
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data

2024-07-02
2024-01-2994
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model.
Technical Paper

Simulation of Hydrogen Combustion in Spark Ignition Engines Using a Modified Wiebe Model

2024-07-02
2024-01-3016
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe's formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes.
X