Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Usage of Low-Cost Particulate Matter Sensors for Characterization of Emission Dynamics at a Traffic Intersection and for the Description of Pollution in Urban Areas

2020-10-05
2020-01-1636
Despite the increase in public attention to particulate matter emissions since the millennium and the known effects on the human organism, representative predictions on the dispersion of emissions in both urban and rural areas are hardly possible so far. Especially the validation of simulations with measurement results is not possible due to the limited number and high price of certified measuring instruments. Rather, the temporally high-resolution measuring instruments are only sporadically distributed within the city, so that emission dynamics at traffic hotspots, such as traffic jams or intersections, cannot be depicted. Furthermore, due to the small number of certified measuring instruments, fine dust pollution can only be interpolated over long distances. In this paper, first statements about the transport characteristics of particles at a road intersection will be made by using a variety of so-called low-cost particulate matter sensors.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Real-World Application of Variable Pedal Feeling Using an Electric Brake Booster with Two Motors

2020-10-05
2020-01-1645
A new type of electric brake booster, which can control brake pedal feeling completely with software, has been developed to explore how a brake system can be used to differentiate and personalize vehicles. In the future, vehicles may share an increasing amount of hardware and rely more heavily on software to differentiate between models. Car sharing, vehicle subscriptions, and other new business models may create a new emphasis on personalization of vehicles that may be achieved most cost effectively using software. This new brake booster controls brake pedal force and brake pressure independently based on the brake pedal stroke so that the pedal feeling is completely defined by software. The booster uses two electric motors and one master cylinder. One electric motor controls pedal force and provides an assist force that amplifies the force that the driver applies to the brake pedal.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

Potentials and Challenges of a Brake Particle Emission Collecting System

2020-10-05
2020-01-1635
Brake particle emissions as a part of non-exhaust emissions are becoming more and more relevant, various international research activities can be stated. Also from the legislation side, first hints are given in regards of possible regulations. One possible approach for the reduction of brake particle emissions deals with the collection of those particles close to the foundation brake. The presented paper will follow such an approach and give some insights. In a first step, the technical layout is described for bench and vehicle testing. While for bench testing a PMP-like style of the setup could be chosen, the vehicle test setup is oriented on conventional wheel dust measurements. Hence, presented results of laboratory testing are dealing with PN and PM measurements. Also the impact on particle size distribution is discussed. It can be stated, that the particle collecting system is able to improve PN and PM emissions. Additionally, ultra-fine particles are almost eliminated.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

An Active Safety System Able to Counter Aquaplaning, Integrated With Sensorized Tires, ADAS and 5G Technology for Both Human-Driven and Autonomous Vehicles

2020-09-27
2020-24-0019
Autonomous vehicles must guarantee safety in all road conditions, including driving on wet roads. Aquaplaning (or hydroplaning) is a phenomenon known since the beginning of automotive history, never solved by an active safety system. Currently, no countermeasure system on the market is able to effectively counteract aquaplaning: ABS, ESP or TCS are still inefficient in overcoming this situation. Latest statistical data confirm that the higher percentage of accidents, injuries and deaths are caused by wet road conditions. The aquaplaning happens when the water on the road is too much and the tires start to float causing the instantaneous loss of control. Such phenomenon occurs in human-driven vehicles, with the responsibility of the driver, but in autonomous vehicles (e.g. Level 5), the responsibility for the safety depends on the car and the reduction of the speed is not a solution.
Technical Paper

The Evaluation of Car Sharing Service Attributes to Raise Acceptance of Electric Vehicles: Evidences from an Italian Survey Among University Students

2020-09-27
2020-24-0021
Sharing mobility has led to a reduction of car ownership with consequent decrease in impacts from a multiple economic, social and environmental perspective. One way of reducing emissions in traffic is to establish the use of electric vehicles (EVs). Insufficient knowledge and high uncertainty towards EV technology can represent a barrier to the acceptance of these new forms of mobility. University students are recognized as a prospective customer group for car sharing services, very receptive to technological innovation. This study proposed a methodology to investigate student user profile defining the heterogeneous preferences regarding a mix of attributes of the service design and to assess the impact of car-sharing experience on acceptance of EVs.
Technical Paper

SCiNaS: A Smart City-driven Navigation System to Catch Green Waves

2020-09-27
2020-24-0017
Driving in modern cities is getting harder and harder due to the continuously changing road and traffic conditions, binding to navigation systems for successful route planning. Despite navigators are becoming more and more powerful and precise in estimating road and traffic conditions, there is still room for improving their effectiveness in route planning. On the other hand, urban areas, thanks to Information and Communication Technologies, are becoming smarter and smarter, enough to be termed as smart cities since they are able to provide advanced smart services, among which mobility ones. The context of this paper is the integration of such two systems and technologies, merging smart navigation solutions and smart city services to obtain value added services improving route planning effectiveness by achieving a trade-off between the two. To this purpose, a smart navigation system that actively interacts with the smart city infrastructure facilities for route planning is developed.
Technical Paper

Investigation of Hybrid Polyamide Composites for Replacement of Metallic Parts

2020-09-25
2020-28-0423
Over the past few decades, the world is looking for a better replacement option for metals. Polymers with reinforcements are finding their way deep inside in most of the engineering application because of its lightweight and superior properties. The aim of this study is to investigate hybrid polymer composite polyphthalamide (PPA) reinforced with glass fibre and Poly tetra fluro ethylene. The reinforcement was varied as 10, 20, 30wt% of Glass Fibre, while fixed quantity of Poly tetra fluro ethylene (PTFE) as 5wt % was taken for hybrid composites preparation. The virgin and hybrid composite specimen were prepared under optimal process parametric conditions through the use of injection moulding techniques and test samples were produced as per ASTM standards. The response of physical properties such as density and various Mechanical testing like Hardness, Tensile Strength, impact and flexural test were carried out and noted.
Technical Paper

EXPERIMENTAL INVESTIGATION ON HYBRID SUSPENSION SYSTEM IN COMMERCIAL PASSENGER VEHICLE

2020-09-25
2020-28-0384
The recent commercial vehicle research emphasis to control noise, vibration, and harshness (NVH). The present study analyzes the performance of a hybrid suspension system for light commercial passenger vehicles under different road conditions. The full car model mathematical model and the experimental investigations were carried out under periodic and discrete road inputs. The parameters like the driver seat acceleration, body acceleration, suspension travel, tire displacement, pitching, and rolling motions were observed. The influence of hybrid suspension system related to driver seat acceleration as compared with the passive model, also simulation model and experimental model. Finally the proposed system improves the comfort level in terms of driver acceleration and keeping the handling performance within the acceptable range with small degradation.
Technical Paper

Experimental investigation on Biogas Production from Waste Press Mud and Cow Dung under Anaerobic Condition

2020-09-25
2020-28-0467
Anaerobic digestion of textile wastes under mesophilic conditions were conducted in batch mode with aim of investigating the bio-methane evolution with an initial solid mass of cow dung – 2 kg, cotton and water in 3:1 ratio and press mud is use in the ratio 3:1 with water were evaluated subsequently for 7 weeks (42 days).The highest production of biogas is noted as 3 m3 in fourth week and the higher production of biogas due to press mud is noted as 0.49 in the fifth week.Carbon dioxide is produced as bi product in this bio digestion process. Highest production rate of methane,biogas and carbon dioxide are in their fourth week. Through this experiment 65%-75% of bio gas is collected by the fourth week.
Technical Paper

Ergonomic study of occupant seating using near-vertical posture for shared mobility applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and government around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility based travelling options in India, it is necessary to make such options comfortable and cost-effective. To make the mobility option cost-effective, it is important to comfortably allow as many passengers per vehicle foot-print as possible. This paper aims to evaluate a novel method of occupant seating to maximize the number of passages the vehicle cabin can accommodate. Since shared mobility options are used for a short duration of commute, the comfort of the seat can be compromised for increasing the no. of occupants. This paper studies the relation between occupant comfort and the inclination of seat cushion.
Technical Paper

Motorist Warning system on road bends in hilly regions for safer riding

2020-09-25
2020-28-0480
Safety is a major concern addressed in various industries and most specifically in transportation industries. Road accidents are undoubtedly more frequent and are responsible for many permanent disabilities deaths worldwide. Many works have been done to improve the safety of different vehicles as the number of accidents is increasing. The main objective of this work is to further improve road safety by providing instantaneous warnings to drivers about hazards in their intended path in hilly region. This further it aims to provide a pleasant and peaceful hill travel and to avoid any possibility of accidents in hill curves. The roads in these hilly regions are always filled with many hectic and endless curves. These curves are classified into Hair-Pin Curves, Salient Curves and Re-entrant Curves. These curves offers partial or no visibility about the incoming traffic for the drivers.
Technical Paper

Optimization of Clutch Characteristics to Improve the Launch Performance of a Sports-Utility Vehicle

2020-09-25
2020-28-0481
Vehicles with manual transmission are still the most preferred choice in emerging markets like India due to their benefits in cost, simplicity and fuel economy. However, the ever-increasing vehicle population and traffic congestion demand a smooth clutch operation and a comfortable launch behaviour of any manual transmission vehicle. In the present work, the launch performance of a sports-utility vehicle (SUV) equipped with dual mass flywheel (DMF) and self-adjusting technology (SAT) clutch could be improved significantly by optimizing the clutch system. The vehicle was observed to be having a mild judder during clutch release (with 0% accelerator pedal input) in a normal 1st gear launch in flat road conditions. An extensive experimental measurement at the vehicle level could reveal the launch judder is mainly due to the 1st order excitation forces created by the geometrical inaccuracy of the internal parts of the clutch system.
X