Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Front-Seat Occupant Injuries in Rear Impacts: Analysis of the Seatback Incline Variable in NASS-CDS

2009-04-20
2009-01-1200
Objective: This study addresses severe injury risks in rear impacts for front-outboard occupants using the seatback incline variable in NASS-CDS. Methods: Severe injury risk (MAIS 4+F) was determined for front-seat occupants in rear impacts involving passenger cars from 1995–2006 NASS-CDS data. The risk of severe injury to front-seat occupants was determined as a function of the rotated position of the seatback and crash severity in three delta V ranges: <20, 20–30, >30 mph. The data was also analyzed for newer model vehicles (≥1997 MY) to assess changes with newer seats and head restraints. The effects of seatbelt use, occupant age and BMI (Body Mass Index) were also examined. Individual NASS-CDS electronic cases were also reviewed with MAIS 4+F injury. There were 25 injured occupants in rotated seats and 46 in non-rotated seats. Results: Severe injury risk for front-seat occupants in rear impacts is lower with a rotated seatback in the most severe rear crashes.
Technical Paper

Crash Injury Risks for Obese Occupants

2008-04-14
2008-01-0528
Obesity rates are reaching an epidemic worldwide. In the US, nearly 40 million people are obese. The automotive safety community is starting to question the impact of obesity on occupant protection. This study investigates fatality and serious injury risks for front-seat occupants by Body Mass Index (BMI). NASS-CDS data was analyzed for calendar years 1993-2004. Occupant exposure and injury was divided in seven BMI categories with obese defined as those with BMI ≥ 30 kg/m2. Injuries were studied for drivers and right-front passengers and included analysis of lap-shoulder belted and unbelted occupants. The results show that obese occupants have a higher fatality risk compared to normal BMI occupants; morbidly obese occupants (BMI ≥ 40 kg/m2) have 2.25 times higher fatality risk (1.15% v 0.51%). The fatality risk for belted obese drivers was 0.29%, which was 6.7 times lower than the 1.94% for those unbelted. These rates are similar to other BMI occupants.
Technical Paper

Bolster Impacts to the Knee and Tibia of Human Cadavers and an Anthropomorphic Dummy

1978-02-01
780896
Knee bolsters on the lower instrument panel have been designed to control occupant kinematics during sudden deceleration. However, a wide variability in car occupant anthropometry and choice of seating posture indicates that lower-extremity contacts with the impingement bolster could predominantly load the flexed leg through the knee (acting through the femur) or through the tibia (acting through the knee joint). Potential injuries associated with these types of primary loading may vary significantly and an understanding of potential trauma mechanisms is important for proper occupant restraint.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
X