Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Threaded Fasteners

2019-12-18
Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Whether this shocking figure is accurate or not, it is irrefutable that threaded fasteners are poorly misunderstood by many in both the fastener and user communities. In October 1990 the USS Iwo Jima suffered a catastrophic steam valve accident minutes after leaving port following repairs to its steam plant. In one of the single most deadly events of Operation Desert Storm, ten of the eleven crewmen present in the engine compartment would lose their lives.
Technical Paper

Computer Vision and Monocular Camera System for Cost Efficient Autonomous Vehicle

2019-11-21
2019-28-2518
The positioning of the sensors on vehicle will play a critical role in autonomous cars, it improves the performance of overall system by all the means and make it cost effective by reducing a total system cost. This paper contributes in deciding the best position of camera location on the vehicle with complete geometric and system calculation based on the maximum speed of vehicle, hardware processing speed, camera parameters, actuation and control time, Blind spot detections, maximum Height of objects, etc. The paper presents the technologies and datasets used for lane lines and other object detections. It focusses on newly proposed technique and its calculations to decide the best location of monocular camera sensor on the vehicle by considering all other parameters of autonomous vehicle system. It enhances the performance of overall system as well as reduces the system cost which takes us closer to the futuristic dream of efficient and low-cost autonomous vehicle.
Technical Paper

SELF EXPRESSIVE & SELF HEALING CLOSURES HARDWARES FOR AUTONOMOUS AND SHARED MOBILITY

2019-11-21
2019-28-2525
Shared Mobility is changing the trends in Automotive Industry and its one of the Disruptions. The current vehicle customer usage and life of components are designed majorly for personal vehicle and with factors that comprehend usage of shared vehicles. The usage pattern for customer differ between personal vehicle, shared vehicle & Taxi. In the era of Autonomous and Shared mobility systems, the customer usage and expectation is high. The vehicle needs systems that will control customer interactions (Self-Expressive) & fix the issues on their own (Self-Healing). These two systems / methods will help in increasing customer satisfaction and life of the vehicle. We will be focusing on vehicle Closure hardware & mechanisms and look for opportunities to improve product life and customer experience in ride share and shared mobility vehicles by enabling integrated designs, which will Self-Express & Self-Heal.
Technical Paper

Injury Reduction in Vehicle to Pedestrian Collision using Deployable Pedestrian Protection System in Vehicles

2019-11-21
2019-28-2551
Head injuries are the main source of road fatalities in when a pedestrian is involved in an accident with the vehicle. The frontal part of vehicle such as engine hood, lower-windshield area and A-pillars are the possible location of head impact in such accidents. The head impact with hard points located in these areas result in the fatal head injuries. The effect of impact can be reduced by using the deployable pedestrian protection systems (DPPS) such as hood-lifters and windshield airbag in the vehicle. The study shows how these systems are effective in reducing the fatalities in pedestrian accidents and how to evaluate the performance of these deployable systems.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
Technical Paper

MOLD IN COLOR DIAMOND WHITE ASA MATERIAL FOR AUTOMOTIVE EXTERIOR APPLICATION

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

A Mathematical Approach to Determine Die Wear during Forging Process and Validation by Experimental Technique

2019-11-21
2019-28-2563
The automotive industry is constantly trying to develop cost effective, high strength and lightweight components to meet the emission and safety norms while remaining competitive in the market. Forging process plays an important role to produce most of the structural components in a vehicle. Precision forging technology is used to produce components with little or no flash leading to elimination of machining process after forging. The load acting on the dies during net or near net forging is very high and leads to wear in the die. In order to have a good die it is important that die wear which is an inevitable phenomenon in a bulk metal forming processes is predicted mathematically. In this study a review on the vast number of studies done in the area of wear and various predictive models is carried out.
Technical Paper

To establish the correlation in between Computer Aided Engineering & physical testing of automotive parts returnable case (Stacktainer).

2019-11-21
2019-28-2569
Automotive returnable cases (Stacktainers) are being used to transport the automotive parts through surface & seaways. No automotive manufacturer wants to spend money on woods, paper & cardboard again and again, it`s better to pay once for robust & reusable cases. these provide better protection to parts from its manufacturing to assembly line of vehicle. While transporting, any kind of crack or failure of returnable cases may lead to loss of money, human & time. To ensure the safety, these pallets have to be validated for vibrations coming from surface irregularities, sea waves & load due to stacking of cases one above other. The objective of this study is to establish a correlation in between the physical testing & simulation in Computer added Engineering (CAE) of automotive returnable case (Stacktainers). There are different types of tests considered to validate the returnable case, rough road evaluation, Multi-axial Vibration & strength evaluation.
Technical Paper

Steering and Handling Performance Optimization Through Correlation of Objective - Subjective Parameters and Multi-body Dynamics Simulation

2019-11-21
2019-28-2412
RESEARCH OBJECTIVE: Automobile Industry has driven through the ages with continuous development with innovative technologies and frugal engineering. Expectation of customer is also increasing through the generations. To meet the customer demand for performance and be best in market, OEM needs to deliver best performance of vehicle with cost effective and short development process. Steering and Handling of vehicle is one of major customer touchpoints and needs to be tuned to achieve various conflicting requirements. The objective of this research is to optimize the steering and handling using correlation between three major methods of evaluation. METHODOLOGY: Methodology for optimization of steering and handling performance using correlation between subjective evaluation, objective measurement and multi-body-dynamic simulation is presented.
Technical Paper

Suspension hard points optimisation

2019-11-21
2019-28-2419
Objective This paper explores the usage of Altair simulation driven optimisation process, Front Suspension hard points of a sedan Car model are optimised for specific target toe curves using MotionView, MotionSolve and HyperStudy This process gives the optimal hard point values to match the target curves without much iterations. Methodology Parametric Multibody model of the front end of sedan is built in MotionView. To Carry out optimisation HyperStudy is used where few of the suspension hard points which affect the toe curves are chosen as design variable. For the chosen Design variables upper and lower bound limits are specified. Ride, Roll and lateral force tests are performed. Optimisation is performed using HyperStudy where it iterates the suspension hard points to match the target toe curves. Each iteration response can be visualized in HyperStudy and can be compared with the target toe curve.
X