Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Numerical and Experimental Second Law Analysis of a Low Thickness High Chamber Wing Profile

2018-10-30
2018-01-1955
This paper presents a coupled numerical and experimental study of an unconventional wing profile such as cp-180-050-gn (Cambered plate C = 18% T = 5% R = 0.78). This wing profile deals with low speeds. It is not currently used on any aircraft model. Otherwise, it presents interesting performances that can be exploited for the design of low-speed STOL or VTOL aircraft by mean of the very high lift that it can generate and can fit with different uses such as VAWT, cyclorotors drones, which are designed explicitly for low-speed operations. After a preliminary CFD assessment of the wing a complete experimental characterisation also at high angles of attack has been performed. The excellent agreement between CFD and experiments has allowed producing a complete analysis of the behaviour of the wing profile both before and after stall conditions. This study has the objective of analysing the viability of such an unconventional wing in traditional or over-stalling conditions.
Technical Paper

Roto-Cycloid Propelled Airship Dimensioning and Energetic Equilibrium

2014-09-16
2014-01-2107
Rotocycloid propulsion presents interesting performance as a possible long-term alternative to helicopters in a far future. It will lead to increase the energy efficiency of VTOL vehicles. This paper focuses on optimization of an airship with the possibility up to 2000 h/year of photovoltaic propelled flight at a cruise speed about 20 m/s. This paper demonstrates the feasibility of this airship concept and presents a full dimensioning according to the CDE (Constructal Design for Efficiency) developed at University of Modena and Reggio Emilia. The proposed solution has been deeply analyzed and the analysis of performances has been presented. The results allow thinking to a novel class of vehicles designed specifically to take the maximum advantage by this propulsion method.
Technical Paper

Optimization of Airships with Constructal Design for Efficiency Method

2013-09-17
2013-01-2168
It is possible to define a novel optimization method, which aims to overcome the traditional Multidisciplinary Design Optimization. It aims to improve Constructal design method to optimize complex systems such as vehicles. The proposed method is based on the constructal principle and it is articulated in different stages: 1 preliminary top-down design process to ensure that the full system has one of the best configurations for the specified goals (contour conditions for constructal optimization could be stated ensuring an effective optimization at full-system level). 2 constructal optimization of the elemental components of the system to maximize the system performances; 3 eventually a competitive comparison between different configurations choosing the better one. The definition of an optimized flying vehicle (an airship) has been produced an example of this improved design method with the objective of minimizing the energy consumption during flight.
Journal Article

Energetic Design and Optimization of a Large Photovoltaic Stratospheric Unconventional Feeder Airship

2012-10-22
2012-01-2166
This paper presents a model of energetic consumption and photovoltaic production for a large airship which acts as feeder connecting the ground with a large cruiser. The analysis of energy needs and productivity allows defining both an ideal sizing and operative mission profiles. The specialised mission of this airship is to ascent and descent. It includes also the connection with the airport buildings on the ground and with the cruiser at high altitude. Photovoltaic production has evaluated in terms of hydrogen and electric propulsion. They have estimated both and a calculation methodology has proposed. The evaluation has supported by CFD evaluations on aerodynamic behaviour of the system at various altitudes.
Journal Article

Quite-Rigid Airship Structure Concept and Design for Enhanced Hovering Capability

2012-09-10
2012-01-1892
This paper explores a novel structural design concept for a demonstrator of a high altitude photovoltaic feeder airship. The presented structural design concept aims to minimize the use of strategic materials in the structure of the airship, but also to maximize the ease of construction of the structure. The proposed design concept and method an effective analysis of historic airship structures considering their efficiency vs. weight and desired performances. By this analysis a novel structural design has been defined to reach the ambitious goal of a lighter and cheaper structure concept which can ensure comparable performances with traditional rigid airships. A discoid shaped airship with a central column has been taken into account. Structural calculations and constructive design has been presented in depth.
Journal Article

Fire-safe Airship System Design

2012-02-29
2012-01-1512
This paper presents the new Hydrogen Fire-safe Airship system that overcomes the limitations present in previous airships designs of that kind, when considering their functioning at advanced operative position. Hydrogen is considered to be more effective than helium because of its low-cost production by hydrolysis, which process is nicely driven only by the photovoltaic energy. This paper presents a novel architectural concept of the buoyant balloon designed to increase the fire related safety, when applying hydrogen as the buoyant gas. The proposed buoyant volume is designed as a multi-balloon structure with a naturally ventilated shape, to ensure that hydrogen cannot reach the dangerous concentration level in the central airship balloon. This concept is expected to be the start of a novel hydrogen airship type, to be much safer than preceding ones.
Technical Paper

Multibody Advanced Airship for Transport

2011-10-18
2011-01-2786
The MAAT project (Multibody Advanced Airship for Transport) aims to investigate aerial transportation possibility by airship based cruiser-feeder system. MAAT is composed by two modules: The cruiser, named PTAH, (acronym of Photovoltaic Transport Aerial High altitude system); the feeder, named ATEN (Aerial Transport Elevator Network feeder), is a VTOL system (Vertical Take Off and Landing) which ensure the connection between the cruiser and the ground. They can lift up and down by the control of buoyancy force and displace horizontally to join to cruiser.
X