Using tolerance stacks ensures that parts fit together properly, reducing scrap and rework, thereby increasing value. This 2-day foundational-level course explains how to use tolerance stacks to analyze product designs and how to use geometric tolerances in stacks.
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course serves a dual purpose: it delves into fundamental DFMEA principles and their practical applications while also offering guidance on leading DFMEA teams. Participants will be introduced to crucial FMEA concepts, along with the theoretical foundations before exploring how to implement these concepts in their DFMEA endeavors. Often, the FMEA process can become a mere replication of past efforts, which poses risks for both organizations developing the products under scrutiny and the end-users.
Team development is organizationally a complex undertaking that requires effective coordination within a company and occasionally between companies. During team activities, members are confronted with a number of ongoing organizational challenges and there is a high potential for conflict between participants in the process. This course addresses teamwork and other 'soft side' factors that largely determine whether product development programs are successfully completed on schedule. The content is relevant for both OEMs and suppliers.
During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Unlock the future of engineering with our comprehensive, full-day Systems Design Engineering (SDE) course, specifically crafted for engineering professionals. This course bridges the strengths of Design Engineering and Systems Engineering, equipping you with the principles and tools to revolutionize your approach to product design. By embracing SDE, your organization will overcome systemic deficiencies, improve engineering efficiency, and consistently design more-innovative best-in-class products, all while achieving significant cost savigns and aligning with digital transformation objectives.
As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric motors while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.