Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

2019-11-21
2019-28-2538
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts.
Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

2019-11-21
2019-28-2570
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
Technical Paper

Development Of Multi-Material Overhead Stowage Systems For Commercial Aircrafts By Using New Design and Production Methods

2019-09-16
2019-01-1858
The relevance of innovative and functional lightweight components for aircrafts has risen significantly during the recent years. In this context, modern lightweight materials as well as cost-efficient and time-saving manufacturing technologies are required for a future aircraft production. The so called Hybrid SMC Technology and the SMC-Foam-Sandwich Technology are promising approaches for the cost-efficient and time-saving manufacturing of lightweight, geometrically complex and functional aircraft components. Both technologies have been used for the development of a new generation overhead stowage system. It is realized by sidewalls made out of enhanced SMC technologies with directly implemented metallic load introduction elements and regular sandwich structures that can be assembled by a quick-assembly principle.
Technical Paper

Low cost, fireproof, and light aircraft interior

2019-09-16
2019-01-1857
Low cost, fireproof, and light aircraft interior Fire is a dramatic issue in aircraft nowadays, especially with composite air crafts. An additional issue is the dangerous use of flammable Li-Ion batteries in a lot of appliances. we propose in order to avoid dramas to produce aircraft interiors, fire doors, cargo bay walls, as well than cargo container able to contain a fire inside them, with our ceramic composite called TOUGHCERAM ®. We have developed a low-cost, ceramic, damage tolerant, this ceramic is flexible between minus 100°C and plus 350°C. TOUGHCERAM ® poly-crystalize between 60°C and 110°C and can be reinforced with fibbers like carbon or basalt one. TOUGHCERAM ® survive 90 minutes to a propane 1900°C torches. TOUGHCERAM ® does not burn, nor smoke. In this paper we will explain how it is possible to develop a fully mineral ceramic offering such unique mechanical and fire properties.
Technical Paper

The benefits of using Composite Bearings in Aircraft Shock Absorbers

2019-09-16
2019-01-1898
This paper will use actual examples from aircraft recently introduced into service, to describe the main advantages of changing from the currently used metallic bearings, to composite bearings. Abstract: The introduction of composite bearing in a recently introduced twin aisle aircraft has resulted in: • Weight saving, by replacing bronze bearings with plastic bearings • Lowering of the particle count in the shock absorber oil, (Reduced contamination with metal particles) leading to reduced wear on seals and bearings. Qualification testing showed that Composite Bearings are able to provide longer service life than bronze bearings.
Technical Paper

Benefits and Application Limits of Phenolic Piston Material in Opposed Piston Calipers

2019-09-15
2019-01-2123
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry – for sliding calipers. For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions? Are there still benefits for judder with the much shorter length to diameter ratio the pistons have in these applications?
Technical Paper

Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials

2019-09-15
2019-01-2105
The binder in friction materials (FMs) plays a very crucial role of binding all the ingredients firmly so that they can function efficiently and reliably. The type and amount of binder, both are very critical for manipulating the desired performance properties, which mainly include friction and its sensitivity towards operating parameters, wear resistance, counter-face friendliness, noise, vibration etc. Although a lot is reported on the influence of types of resins on the tribo-performance of FMs, hardly any paper pertains to paint this on a bigger canvas with a more detailed understanding of the amount of resin in FMs on the performance properties including noise. The present study addresses these aspects by developing brake-pads with identical composition, but varying in amount (wt.%) of straight phenolic resins (6, 8, 10 and 12) by compensating the difference by barite, a space filler.
Technical Paper

Role of Graphite Particles Size in Brake-Pads in Controlling Tribological and Noise Performance.

2019-09-15
2019-01-2106
Graphite plays a crucial role in friction materials, since it has good thermal conductivity, lubricity and act as a friction modifier. The right type, amount, shape and size of the particles control the performance of the brake-pads. In this study, particles of synthetic graphite produced in a unique highly controlled graphitization process were selected to develop NAO- Cu-free brake-pads. The four types of pads had identical composition except variation in average particle size of the graphite (60 µm, 120 µm, 200 µm and 400 µm). Physical, mechanical and chemical characterization of the developed brake-pads was done. Tribological performance was studied using a full- scale inertia brake dynamometer following a Japanese automobile testing standard (JASO C406) and noise studies were done on reduced scale prototype following SAE J2521 standard.
Technical Paper

Chemical and Physical Characterization of Organic Particulate Matter from Last Generation Exhaust Aftertreatment System of Medium Duty Diesel Engine

2019-09-09
2019-24-0053
Particulate Matter from Euro 6 Medium Duty diesel engine was analyzed from engine-out, downstream of particulate filter (DPF), and up to the exit of a selective catalytic reactor (SCR) to characterize its chemical and physical nature. Particular attention was devoted to the analysis of particles down to 23 nm. An array of chemical, physical and spectroscopic techniques (Gas chromatography coupled with mass spectrometry (GC-MS), mobility analyzer, UV-visible absorption and fluorescence spectroscopy) was applied for characterizing the organic particulate matter (PM, constituted of polycyclic aromatic hydrocarbons (PAH), heavy aromatic compounds, soot) in the exhaust. The engine was operated at “full-load” (100% of the total power, representing the best performance of the engine operation) condition, and at different engine speeds. Results showed that the DPF efficiency was greater than 96% in the reduction of the sub 23 nm particles across the speeds range.
Technical Paper

Heat Transfer Characterization of Catalytic Converter Substrates During Warm-Up

2019-09-09
2019-24-0163
The transient heat transfer behavior of a real size automotive catalytic reactor has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO and C3H6 oxidations, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters have been chosen based on the tuning of experimental data. The impact of different initial catalytic converter temperatures, inlet flow temperatures and inlet flow rates have been quantified, even in terms of overall cumulative emissions. . A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinate are defined. Using this suitably modified coordinates, for the case of negligible axial solid conduction, computed solid temperature at the reactor outlet lay on the typical S-curve.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Standard

Fluids

2019-07-17
WIP
AS6286/3A

Field of Application

This document shall be used in conjunction with:

AS6286 Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground

AS6286/1 Processes including Methods

AS6286/2 Equipment

AS6286/4 Weather

AS6286/5 Health, Safety and First Aid

AS6286/6 Aircraft Deicing/Anti-icing Diagrams, No-Spray-Zones

How to Purchase Global Anti-Icing and De-Icing Standards

X