Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

2019-11-21
2019-28-2582
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5.
Technical Paper

Characterization of Areca and Tamarind fiber reinforced hybrid polymer composites for structural applications

2019-10-11
2019-28-0168
In recent years, natural fibers reinforced composites are used in various engineering arenas owing to its specific rewards like biodegradable, low cost, readily available, easy processing, less toxic and eco-friendly physiognomies. However, the commonly used E-glass fiber polymer composite was just inverse to the properties of the reported natural fibers. Therefore, in the present work discarded areca and tamarind fibers was collected, extracted, fabricated and evaluated for its overall performance and to implement it as an alternative for synthetic fiber composites. Composite specimens are fabricated with different proportions of fiber/matrix and investigated for their potentiality by exploring its mechanical, physical, chemical, water absorption and thermal properties as per standard test procedures. Moreover, the obtained areca and tamarind hybrid composite results are better than their individual based composites and in par with the existing synthetic fiber products.
Technical Paper

Machinability and parametric optimization of Inconel 600 using Taguchi-Desirability analysis under dry environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion resistant, excellent mechanical properties and good creep rupture strength at higher temperature. Alloy 600 is used in chemical and food processing, heat treating, phenol condensers, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate and cutting depth on the force, surface roughness and tool wear are carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Turning of Inconel 825 with coated carbide tool applying vegetable-based cutting fluid mixed with CUO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with the addition of nanoparticles was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of nanoparticles (CUO, Al2O3 and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance, smaller flank and crater wear on the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Study of Mechanical Properties of Similar and Dissimilar Metals of Monel 400 and SS 321by using Gas Tungsten Arc Welding (GTAW) Process

2019-10-11
2019-28-0141
In the present study the fabrication of joints between the nickel base alloys and steels of various grades have been under taken, joining of these metals has assumed new importance by virtue of their widespread in nuclear and aerospace applications. Such joints provide excellent strength, oxidation and corrosion resistance. This paper deals with the study of weldability, and mechanical properties of weld joints of two different alloys such as nickel based alloy- monel 400 and austenitic stainless steel AISI 321. The joining of the similar and dissimilar metals is carried out by GTAW process by employing two different types of filler rods such as SS321 and ERNiCrMo-3.
Technical Paper

Design and Analysis of Aluminium-Flyash Composite for Connecting Rod

2019-10-11
2019-28-0166
In this modern era of rapid growth of technology and need of economical machining processes and materials, there is an increasing demand for new materials for different mechanical applications. Composites with fly ash as reinforcement are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. To improve wettability, elements such as Mg and Si are added into Al melt to incorporate the ceramic particles. The chemical composition and engineering properties of fly ash, its physical and chemical properties make it an ideal raw material for producing various application based composites. The main objective this paper is to fabricate an aluminium- fly ash composite material suitable for parts like engine connecting rod which demand high strength and temperature sustainability at comparatively less weight. The composite will be made using casting process and Engine connecting rod will be designed in AutoCAD software.
Technical Paper

CFD Simulation on turbulent forced convection of CuO-Water Nanofluids in a horizontal circular pipe

2019-10-11
2019-28-0131
The present study provides a detailed investigation on simulation of Copper oxide nanofluids in a simple horizontal circular pipe considering turbulent forced convection, with a constant heat flux boundary condition. The simulation is carried out using three different models available in fluent viz. Newtonian single phase model, Eulerian-mixture and Eulerian-Eulerian multiphase models. The Reynold number of the flow is varied along with volume concentration of nanoparticles varying from low to high. Nanofluids rheology is studied by considering standard k-ε two equation turbulence model with enhanced wall treatment considering appropriate wall y+ values. The effective temperature dependent thermo-physical properties for nanofluids were seized from the literatures. The results from the simulation clearly showed an increase in the heat transfer characteristics with the addition of nanofluids compared to that of base fluid alone.
Technical Paper

Experimental Investigation Mechanical and Corrosion Characteristics of Friction Stir Welded Aluminum Alloy 7075-T6

2019-10-11
2019-28-0175
Friction Stir Welding (FSW) is a quite new solid-state joining process. This joining technique is energy efficient, environment friendly, and adaptable. In particular, it can be used to join high-strength Aluminium alloys and other metallic alloys that are difficult to weld by conventional fusion welding. Friction Stir Welding heats metal to the temperature below re crystallization. FSW avoids welding defects like porosity and hot cracking which are frequently in conventional welding techniques due to alloy’s very low re-crystallization temperature and higher heat dissipating nature. This process combining deformation heating and mechanical work to obtain high defect free joints. Aluminum alloy 7075-T6 is generally used in various industrial applications such as automobile, ship building and aerospace due to their light weight, good mechanical properties and high corrosion resistance.
Technical Paper

Advances in Laser Welding of Stainless Steel Alloys

2019-10-11
2019-28-0056
As a fusion welding process, Laser welding has proven to be the most promising method for joining of different materials it can be either a similar or dissimilar material category.
Technical Paper

Study of Mechanical Properties and Multi Response Optimization of Process Parameter for Showing Signs of Improvement Product Quality in Drilling of Alsi7cu4 Utilizing GRA in Taguchi Method

2019-10-11
2019-28-0058
Showing and streamlining of cutting parameters are a champion among the most essential components in drilling processes. This examination displays the change of drilling procedures parameters on AlSi7Cu4 made by Gravity Die Casting and with replies in light of OA with Taughi GRA and ANOVA. The effects of alloying parts were bear on the Chemical Composition, microstructures, mechanical property, Hardness, X-Ray and S Das response is particularly analyzed. Motivations on the progression of Drilling parameters using the Taguchi strategy to obtain slightest surface Roughness (Ra), Circularity Error, Burr size and Thrust Force. Different Drilling preliminaries were coordinated using the L9 OA on CNC Milling machine. The examinations were accomplished on AlSi7Cu4 composite piece cutting tool of an ISO 460.1-1140-034A0-XM GC3 of 12 mm measurement with Tool 140 degrees, used all through the preliminary work under dry cutting conditions.
Technical Paper

Mechanical and Metallurgical analysis of HSLA steel for Gas Tungsten Arc Welding with different shielding gases

2019-10-11
2019-28-0069
The special designed HSLA (High Speed Low Alloy) Steel is most commonly used in Naval Steel Structures and aircraft structures due to its indigenous properties. The aim of this paper is used to investigate the effect of shielding gas in the Gas Tungsten Arc Welding process. The sheet plate of size 300mmx150mmx10mm is taken and welded by GTAW process using argon and helium on the shielding gas. DMR 249A plates are welded by GTAW by using helium and argon as shielding gas with a flow rate of 16 L/min, the interpass temperature is 140ᵒ C and the heat input is less than 1.2KJ/min which is maintained to get a balanced phases of α and γ where the impact toughness, Tensile and micro hardness was studied with different shielding gas and the metallurgical properties were analysed in the base metal, heat affected zones and weld zones. The sheets contain 1.9%Ti and 6.2% Ni and the weld beads were studied for both the type of shielding gases.
Technical Paper

Investigation of thermal shock resistance of CeO2 coating on Titanium alloy by magnetron sputtering

2019-10-11
2019-28-0103
Titanium alloy (Grade V) is used in aerospace, medical, marine and chemical processing industries. To improve the thermal shock resistance and corrosion resistance of the titanium alloy at elevated temperatures, Thermal barrier coating (TBC) has been predominantly used. Cerium oxides have been proposed as TBC, due to their high thermal expansion coefficient, higher thermal shock resistance, good adhesion strength, low corrosion rate and excellent tribological performance. In this study, CeO2 were coated on Titanium alloy by magnetron sputtering by varying the deposition time. The microstructure and mechanical properties of CeO2 coatings were systematically investigated. Deposition time was varied as 30 mins, 60 mins and 90 mins respectively, to achieve the variation in thickness of the coating on the substrate. The thickness of the coated specimen was measured by atomic force microscopy and found to be 500 nm, 180 nm and 70 nm respectively.
Technical Paper

Corrosion characteristics on friction stir welding of dissimilar AA2014/AA6061 alloy for automobile application.

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to below recrystallization temperature. FSW mostly avoids welding defects like hot cracking and porosity which are mainly in conventional welding techniques due to alloy’s higher heat dissipating nature and low re-crystallization temperature. In this process combining mechanical work and deformation heating to get high defect free welding joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of applications such as an automobile, shipbuilding and aerospace due to their high corrosion resistance, lightweight and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The mechanical and Corrosion behaviour of the welded joints were investigated at different welding parameters.
Technical Paper

Emission and tribological studies on nano CuO/Jatropha methyl ester/Synthetic mineral oil in a two-stroke engine.

2019-10-11
2019-28-0095
In lieu of the increase in the population of automobiles, there is heavy use of fossil fuels and mineral oils. This leads to depletion in fossil fuel and mineral oil which is a by-product of petroleum. We cannot depend on this for a long period of time and which is toxic to the environment. In order to reduce the usage of existing mineral oil for lubrication, a source of non-edible oil from Jatropha Curcus which is available in an abundant and renewable source of alternative lubricant is processed as jatropha methyl ester because of high viscosity and density and blended with base oil which reduces the pollution. To increase the antiwear properties of the lubricating oil nano copper oxide particle additive are blend with the base oil which is tested in a two-stroke engine. Emission and tribological effects have been tested. There are chances of them being depleted in a short span of years.
Technical Paper

Investigation of Metallurgical, Mechanical Properties of Hastelloy X by Keyhole Plasma Arc Welding Process

2019-10-11
2019-28-0152
This research work studies effect of microsegregation, microstructure and tensile strength of the Hastelloy x weldment produced by plasma arc welding (PAW). Weld joint was obtained in the single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich MoNi4 (P) phase and Cr-rich M23C6 phase. The observed tensile result of weldment is inferior to base metal. The development of secondary precipitates in the weld zone affected the tensile properties of the weld joint.
Technical Paper

Investigation on microstructure and mechanical properties of corrosion resistance alloy C-2000 fabricated by conventional arc welding technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Banana Stem Based Activated Carbon as Filler in Polymer Composites for Automobile Applications

2019-10-11
2019-28-0093
Activated carbon was produced from a new part of banana plant namely true stem in this current research and used as fillers in polymer composites for automobile application. True stems of banana plants are the main wastes in banana or fruit markets which refer to the remains after banana fruits are removed from the supporting stems. Conversion of raw material into activated carbon particles is done by chemical and heat activation. The raw material used here were dried samples of banana plant’s true stem. This material was heated in a crucible at 400°C and then powdered. These crushed samples were activated using hydro-chloric acid at 120°C for 5 hours and finally in a furnace for thermal activation at 700°C for 1 hour. These particles were incorporated as fillers in composites at proportions of 10%, 15%, 20% and 25%. The activated carbon samples were characterized by determining its fixed carbon content and bulk density.
X