Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Design and Simulation of Braking System for ATV

2020-10-05
2020-01-1611
Design and Simulation Analysis of Braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, Structural, Thermal, Dynamic, Computational Flow Dynamics, Vibrational & Fatigue Behaviour of Ventilated brake disc Rotor, Hub and Brake Caliper are analysed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analysed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analysed from their characteristics plot. Vibrational Behaviour, Static and Structural Behaviour, Thermal Behaviour, Performance Efficiency, Flow Behaviour of Ventilated Disc Brake Rotor can be easily depicted with respect to Bump and Droop during Acceleration, High Climb and manoeuvrability.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

Resabtors - Advanced Multi-Material Muffler Designs for Clean Air Applications

2020-09-30
2020-01-1554
The development and production of resonators on the charged air side of combustion engines require profound base of knowledge in designing, simulating and the production of such parts in different materials (aluminum, copper, stainless steel and technical plastic). As combustion engines are under constant discussion, this existing knowledge base should be used for other applications within and outside the automotive industry. Very quickly it became apparent that new challenges often require completely new solutions, designs and materials to meet the requirements of flow noise reducing parts. For example, for clean air applications mufflers based on “special treated foams” and “meta-materials” can be introduced. These materials offer new potentials for tuning of the frequency range and allow improved broad banded flow noise attenuation. Such parts are named “Resabtors” in order to take respect of the different flow noise attenuation principles resonation and absorbing.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

An Active Safety System Able to Counter Aquaplaning, Integrated With Sensorized Tires, ADAS and 5G Technology for Both Human-Driven and Autonomous Vehicles

2020-09-27
2020-24-0019
Autonomous vehicles must guarantee safety in all road conditions, including driving on wet roads. Aquaplaning (or hydroplaning) is a phenomenon known since the beginning of automotive history, never solved by an active safety system. Currently, no countermeasure system on the market is able to effectively counteract aquaplaning: ABS, ESP or TCS are still inefficient in overcoming this situation. Latest statistical data confirm that the higher percentage of accidents, injuries and deaths are caused by wet road conditions. The aquaplaning happens when the water on the road is too much and the tires start to float causing the instantaneous loss of control. Such phenomenon occurs in human-driven vehicles, with the responsibility of the driver, but in autonomous vehicles (e.g. Level 5), the responsibility for the safety depends on the car and the reduction of the speed is not a solution.
Technical Paper

Methods to Control Curing Induced Distortion in Hybrid Joining of Dissimilar Metals

2020-09-25
2020-28-0401
In lightweight structures with dissimilar metal designs, structural adhesive joining is a potential joining method. Adhesives help in reducing galvanic corrosion by minimizing physical contact between two dissimilar metals. Along with adhesives, fasteners are often used as a secondary joining method to hold the assembly together during adhesive curing. Therefore, a hybrid joint which is a combination of adhesives and mechanical fasteners is potential joining method to join dissimilar metals. However, when two dissimilar metals such as aluminum to steel are joined with hybrid joint by adhesive curing at elevated temperature, the distortion of assembly is observed when cooled at room temperature. This is due to the mismatch between coefficients of thermal expansion of aluminum vs steel. The adhesive may also experience residual stress and fracture. In this study, adhesive curing induced distortion is studied using 1.1 meter long specimens of aluminum to steel hybrid joint assembly.
Technical Paper

Experimental investigation on Biogas Production from Waste Press Mud and Cow Dung under Anaerobic Condition

2020-09-25
2020-28-0467
Anaerobic digestion of textile wastes under mesophilic conditions were conducted in batch mode with aim of investigating the bio-methane evolution with an initial solid mass of cow dung – 2 kg, cotton and water in 3:1 ratio and press mud is use in the ratio 3:1 with water were evaluated subsequently for 7 weeks (42 days).The highest production of biogas is noted as 3 m3 in fourth week and the higher production of biogas due to press mud is noted as 0.49 in the fifth week.Carbon dioxide is produced as bi product in this bio digestion process. Highest production rate of methane,biogas and carbon dioxide are in their fourth week. Through this experiment 65%-75% of bio gas is collected by the fourth week.
Technical Paper

Nd: YAG Laser Welding of Stainless Steel 304: The Effects of Al2O3 Micro Particles Addition

2020-09-25
2020-28-0418
In the present work, fabrication of similar Stainless Steel (SS) 304 joints by Nd-YAG Laser Welding Process (LWP) was done. A novel approach was attempted in this study. Welding was performed on dual sides of the plate (top and bottom) for a better mixture of micro powder particles in the weld pool region to achieve maximum depth of penetration, which is not easily possible in a single-sided LWP. High depth of penetration during fabrication of joints, significantly improved the mixture ratio of molten steel with reinforced micro powder particles. Al2O3 micro powder particles were reinforced in the weld pool region through the drilling process with varying depth ratios, and a moderate gap was maintained between each hole. The effects of Al2O3 on the microstructure and mechanical properties were studied and elaborated. Totally 12 samples were fabricated and joining was performed keeping the frequency as constant and varying laser power, travel speed for all the trials.
Technical Paper

Free Vibrational Characteristics of Dual Side Nd: YAG Laser Welded Stainless Steel 304 Joints Reinforced with Al2O3 Micro Powder Particles

2020-09-25
2020-28-0393
Nd: YAG Laser Welding Process (LWP) is the most efficient method commonly used for the joining of different kinds of materials, whether it can be a sheet or plate. LWP in general, uses high power density, frequency and travel speed or feed rate as primary process parameters in order to perform a joining process across the metals. This paper investigates the effect of free vibrational characteristics for Stainless Steel 304 (SS 304) joints which are reinforced with Al2O3 micro particles processed by dual side (welding performed on the top and bottom surface of sheets) Nd: YAG LWP. The inclusion of micro particles was inserted directly across the weld pool region, by fabricating drills with a constant gap between each drilled holes. Totally 12 samples were fabricated with different laser power, travel speed and by keeping the frequency level as constant for all the experiments.
Technical Paper

Comparative Studies on Conventional Groove SMA and GMA Welds of Dissimilar 304LN ASS and HSLA Steels

2020-09-25
2020-28-0405
Dissimilar metal welds (DMWs), between austenitic stainless steel (ASS) and micro alloyed high strength low alloy steel (HSLA), are used in high temperature applications in power stations and petrochemical plants. The gas metal arc welding (GMAW) has surpassed the shielded metal arc welding (SMAW) process due to its advantages of producing fast, long, clean continuous weld at any position [1, 2, 3, 4, 5]. A studies on mechanical and metallurgical properties of conventional V-groove SMAW and GMA Welding of dissimilar 20 mm thick 304LN ASS and micro alloyed HSLA steel plate were carried out by using austenitic E308L- 15 electrode with gas tungsten arc welding (GTAW) root pass. The tensile (axial and all-weld) properties, hardness and microstructure of the weld and HAZ are analyzed.
Technical Paper

Experimental Studies on Weldability of Oil Hardening Non Shrinking Die Steel

2020-09-25
2020-28-0424
The Oil Hardening Non Shrinking (OHNS) die steel refers to a variety of carbon and alloy steels that are particularly well-suited for making tools. Though these steels are weldable, there is risk of crack formation. But, this can be avoided with convinced specifications like pre heating, proper choice of electrode etc., In the present work, OHNS die steel is welded with three different electrodes. The chosen electrodes were mild steel electrode, E312-16 chromium based electrode and E-NiCrFe-3 nickel based electrode. The OHNS steel is welded with these three electrodes and the welded specimens were examined for hot cracking tendency and mechanical properties of the joint. The hot cracking tendency was assessed by Houldcroft’s weldability test (Fishbone test). All the three electrodes proved the good results in terms of hot crack resistance and the specimen welded with E312-16 chromium based electrode provides good mechanical properties.
Technical Paper

Investigation of Hybrid Polyamide Composites for Replacement of Metallic Parts

2020-09-25
2020-28-0423
Over the past few decades, the world is looking for a better replacement option for metals. Polymers with reinforcements are finding their way deep inside in most of the engineering applications because of its lightweight and superior properties. The aim of this study is to investigate hybrid polymer composite polyphthalamide (PPA) reinforced with glass fiber and Poly tetra fluro ethylene. The reinforcement was varied as 10, 20, 30wt. % of Glass Fibre, while the fixed quantity of Poly Tetra Fluro Ethylene (PTFE) as 5wt. % was taken for hybrid composites preparation. The virgin and hybrid composite specimen were prepared under optimal process parametric conditions through the use of injection moulding techniques and test samples were produced as per ASTM standards. The response of physical properties such as density and various Mechanical testing like Hardness, Tensile Strength, and impact strength were carried out and noted.
Technical Paper

Effect of Shot Peening Exposure Time on Mechanical Behavior of Al 7075-T6 Alloy

2020-09-25
2020-28-0430
This investigation addresses the effect of exposure time applied through shot peening as one of the severe plastic deformation technique on mechanical behavior of Al 7075-T6 alloy. Shot peening induces hardened layer in the surface region due to work-hardening effect by shot peening. The specimen shot peened for 105 s (SP105) exhibited highest values of tensile strength (591 MPa), yield strength (550 MPa) and surface hardness (265 VHN) as compared with untreated specimen with 568 MPa, 504 MPa and 184 VHN respectively. The increment in tensile properties are due to rapid improvement in the surface work-hardening by virtue of peening treatment with 105 s duration. In contrast, the shot peened alloy exhibited lower percentage elongation and higher surface roughness as compared with untreated one. The surface morphology and roughness studies before and after the treatment analyzed by suitable characterization.
Technical Paper

Effect of Austenitic Filler Wires on Duplex Stainless Steel 2205 Weldment Made by Gas Tungsten Arc Welding

2020-09-25
2020-28-0431
Duplex stainless steel (DSS) 2205 grade is welded with austenitic filler wires (ERNiCrMo-3 and ERNiCrMo-4) using gas tungsten arc welding (GTAW) process to operate at marine environments. Microstructure using optical (OM) and scanning electron microscopes (SEM) with energy dispersive spectroscope (EDS) are utilized to examine the metallurgical characterization of DSS 2205 weldments. Microhardness, impact, and tensile tests are employed to obtain the mechanical properties of weldments. Secondary precipitates such as Mo23C6 and Cr23C6 are formed in the ERNiCrMo-3 weldment which reduced the mechanical properties. In this study, ERNiCrMo-4 filler wire is provided enhanced mechanical properties for welding DSS 2205.
X