Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A computational study of hydrogen direct injection using a pre-chamber in an opposed-piston engine

2024-07-02
2024-01-3010
Opposed-piston two-stroke engines offer numerous advantages over conventional four-stroke engines, both in terms of fundamental principles and technical aspects. The reduced heat losses and large volume-to-surface area ratio inherently result in a high thermodynamic efficiency. Additionally, the mechanical design is simpler and requires fewer components compared to conventional four-stroke engines. When combining this engine concept with alternative fuels such as hydrogen and pre-chamber technology, a potential route for carbon-neutral powertrains is observed. To ensure safe engine operation using hydrogen as fuel, it is crucial to consider strict safety measures to prevent issues such as knock, pre-ignition, and backfiring. One potential solution to these challenges is the use of direct injection, which has the potential to improve engine efficiency and expand the range of load operation.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
Technical Paper

1D-3D CFD Investigations to Improve the Performance of Two-Stroke Camless Engine

2024-04-09
2024-01-2686
The transportation sector still depends on conventional engines in many countries as the alternative technologies are not mature enough to reduce carbon footprints in society. The four-stroke diesel engines, primarily used for heavy-duty applications, need either high intake boosting or a large bore to produce higher torque and power output. There is an alternative where a four-stroke engine operated in two-stroke mode with the help of a fully flexible variable valve actuation (VVA) system can achieve similar power density without raising the intake boosting or engine size. A fully flexible VVA is required to control the valve events (lift, timing, and durations) independently so that the four-stroke events can be completed in one cycle. In this study, 1D-3D CFD coupled simulations were performed to develop a gas exchange process for better air entrapment in the cylinder and evacuate the exhaust products simultaneously.
Technical Paper

The Flathead Valved Boosted Uniflow Two Stroke Engine

2023-10-24
2023-01-1826
Experimental aviation engines face numerous challenges, including the need for energy efficiency, alternative fuel sources, reduced weight and size, greater durability with reliability, emissions reduction, and integration with advanced control and monitoring systems. This study presents the performance of a two-stroke engine with a Uniflow scavenging system with a flathead valve concept, with lower specific fuel consumption than conventional two-stroke aircraft engines. The engine’s maximum speed is limited to 3000 rpm for better cylinder scavenging efficiency, which also eliminates the need for a reduction gearbox, simplifies the design, and reduces the engine’s total mass. 1D simulations were conducted to evaluate combustion and performance parameters using aviation.
Technical Paper

Development of Supercharged Two-Stroke Engine with Intake and Exhaust Valve for Hybrid System

2023-10-24
2023-01-1823
The two-stroke engine has a small displacement and high output, and therefore saves space when the engine is installed in a vehicle. Thus, the application of two-stroke engines to HEVs is a very effective means of reducing vehicle weight and securing engine space. On the other hand, the unfired element increases in the exhaust gas with a two-stroke engine because the air-fuel mixture is blown through to the exhaust system during the scavenging process inside the cylinder. Moreover, combustion becomes unstable due to the large amount of residual burnt gas in the cylinder. To solve these problems, we propose a two-stroke engine that has intake and exhaust valves that injects fuel directly into the cylinder. We describe the engine shape and the method that can provide high scavenging efficiency and stable combustion in such a two-stroke engine.
Technical Paper

On the Effects of Piston Pocket, Intake Port, and Transfer Duct Geometries in a Small Stratified-Scavenging Two-Stroke Engine

2023-10-24
2023-01-1825
The regulatory framework of pollutant emissions concerning non-road small internal combustion engines is becoming increasingly challenging. The upcoming scenario threatens to cut out small two-stroke engines because of the fuel short circuit occurring during transfer and exhaust ports overlap, causing the emission of unburned hydrocarbons and reducing engine efficiency. Despite this challenge, small two-stroke engines are unmatched in high power density applications in which weight and autonomy hinder the diffusion of electric technologies. The continuation of small two-stroke engines in the market will thus depend on the capability of mitigating fuel short circuit. From this perspective, some of the Authors found the low-pressure injection technology fulfilling the purpose at engine full load; however, in addition to system complexity and costs, a lack of mixture homogenization was noted at low load.
Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
Technical Paper

Investigation of Liquid Lignin-Methanol Blends under Realistic Two-Stroke Marine Engines Conditions

2023-08-28
2023-24-0085
With a view to reducing the environmental impact of fossil fuels, advanced lignin-based biofuels could provide a valuable contribute, since lignin is the most abundant biopolymer on earth after cellulose. However, its thermophysical properties would hamper its use as a pure fuel. In this work we investigated the combustion behavior of sprays of a liquid lignin-methanol blend and evaluated its potential as a low-carbon marine fuel for large two-stroke engines. To this end, an experimental campaign was conducted in an optically accessible combustion chamber whose main dimensions correspond to those of a single cylinder for large two-stroke engines. The chamber is provided with optical accesses for optical diagnostics of the combustion process. The combustion of the mixture was ignited using a diesel pilot jet as the ignition source. Two marine injectors are mounted in the chamber, namely “main” and “pilot” injectors.
Technical Paper

High Performance and Near Zero Emissions 2-Stroke H2 Engine

2023-08-28
2023-24-0068
The paper presents a preliminary study on a virtual 2-stroke 3-cylinder 0.9 L DI SI supercharged engine running on Hydrogen (H2), able to meet both high performance targets and ultra-low emissions limits (NOx<20 ppm). Combustion is similar to a conventional 4-stroke H2 DI engine, while the design of the cylinder and the actuation law of both intake and exhaust valves are specifically optimized for the 2-stroke cycle. In comparison to a more conventional 2-stroke loop scavenged engine, with piston-controlled ports, the use of poppet valves enables a more flexible control of the gas exchange process and to maintain the same design of a 4-stroke engine for pistons, cylinders block, crankcase and lubrication system. On the other hand, it is more difficult to avoid the short-circuit of the fresh charge, while permeability of the valves becomes quite critical at high engine speed.
Journal Article

Investigation of In-Cylinder Pressure Measurement Methods within a Two-Stroke Spark Ignition Engine

2023-05-12
Abstract This work describes an investigation of measurement techniques for the indicated mean effective pressure (IMEP) on a 55 cc single-cylinder, 4.4 kW, two-stroke, spark ignition (SI) engine intended for use on Group 1 and Group 2 remotely piloted aircraft (RPAs). Three different sensors were used: two piezoelectric pressure transducers (one flush mount and one measuring spark plug) for measuring in-cylinder pressure and one capacitive sensor for determining the top dead center (TDC) position of the piston. The effort consisted of three objectives: to investigate the merits of a flush mount pressure transducer compared to a pressure transducer integrated into the spark plug, to perform a parametric analysis to characterize the effect of the variability in the engine test bench controls on the IMEP, and to determine the thermodynamic loss angle for the engine.
Technical Paper

Numerical Study on High-Load Performance of a Two-Stage Boosted Poppet-Valved Two-stroke Diesel Engine

2023-04-11
2023-01-0443
Two-stroke cycle is one of the most effective methods to increase the torque and power output of a four-stroke engine due to the doubled firing frequency compared to four-stroke cycle at the same engine speed. As the two-stroke cycle lacks separate intake and exhaust strokes, the positive pressure difference between intake and exhaust ports is required to drive fresh charge into the cylinder, and is affected by intake port structures due to the different amounts of short-circuited fresh charge during scavenging process. To evaluate the effects of intake port structures on the high-load performance of a boosted poppet-valved two-stroke diesel engine, one-dimensional gas dynamic model and three-dimensional computational fluid dynamics model were established and used to predict the high-load performance of the boosted two-stroke diesel engine with top-entry intake ports, inclined side-entry intake ports, and side-entry intake ports, respectively.
Journal Article

Improving the Performance of Internal Combustion Engines and Reducing Emissions by Injecting Water with the Air Entering the Engines

2022-10-17
Abstract The current work experimentally and theoretically studied the effect of water injection on improving the performance of three different types of single-cylinder internal combustion engines. The first engine is a four-stroke diesel, the second is a four-stroke gasoline, and the third is a two-stroke gasoline engine. Different amounts of water were injected relative to fuel consumption for the three engines to find how it affected the performance, exhaust gas temperatures, and emissions. Comparing the experimental and theoretical results was done to determine the effect of spraying water on lowering the temperatures of the exhaust gases, increasing the thermal efficiency, and lowering specific fuel consumption. The experimental results for the various tested engines show that, in general, the exhaust gas temperature and gas emission decreases by increasing the mass of water injection; these differences vary based on the engine and the operating conditions.
Technical Paper

Research of Spark Ignition Engine and Internal Mixture Formation Using Single-Zone, Two-Zone and Three-Zone Calculation Model of It Working Process

2022-08-30
2022-01-1000
Thermodynamic models based on the volume balance method for calculating the working process of an engine with spark ignition and internal mixture formation are presented. The single-zone model makes it possible to determine the pressure and average temperature of gases in the engine cylinder during the working process. The two-zone combustion model takes into account the change in the volume of the exhaust gases zone and the air-fuel mixture zone. The model makes it possible to determine the pressure of gases in the cylinder and the temperature in the zones under consideration when the air-fuel mixture is distributed over the entire above-piston volume at the moment of ignition. The three-zone combustion model takes into account the change in the volume of the exhaust gases zone, air-fuel mixture zones and air zones when organizing the stratification of the air-fuel charge, allows you to determine the gas pressure in the cylinder and the temperature in the zones under consideration.
Technical Paper

An Investigation into the Effects of Swirl on the Performance and Emissions of an Opposed-Piston Two-Stroke Engine using Large Eddy Simulations

2022-08-30
2022-01-1039
Opposed-piston two-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a conventional four-stroke diesel engine. However, the uniflow scavenging process is difficult to control over a wider range of speed and loads due to its sensitivity to pressure dynamics, port timings, and port design. Specifically, the angle of the intake ports can be used to generate swirl which has implications for open and closed cycle effects. This study proposes an analysis of the effects of port angle on the in-cylinder flow distribution and combustion performance of an OP-2S using computational fluid dynamics engine. Large Eddy Simulation (LES) was used to model turbulence given its ability to predict in-cylinder mixing and cyclic variability. A three-cylinder model was validated to experimental data collected by Achates Power and the grid was verified using an LES quality approach from the literature.
Technical Paper

Assessment of the Combustion Process in Ultra-Lean (λ>1.8) Natural Gas Engines

2022-08-30
2022-01-1061
The majority of today’s natural gas fired engines are applying a premixed combustion concept, which is commonly assumed to be based on the turbulence-enhanced propagation of a thin flame separating the burnt and unburnt fractions of the mixture volume. This concept has been confirmed by means of comprehensive experimental investigations on passenger car engines operating at air/fuel ratios close to stoichiometry; however, for larger industrial engines (4-stroke and 2-stroke) designed for ultra-lean (λ >1.8) operation in order to achieve highest efficiencies, this assumption is no longer valid, as will be shown in the following. On these engines, the combustion process is largely controlled by the reaction kinetics of the chemistry and hence exhibits more similarity to homogeneous charge or spark assisted compression ignition (HCCI or SACI) combustion concepts.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Journal Article

Usage of 2-Stroke Engines for Hybrid Vehicles

2022-03-24
Abstract As the automotive industry moves toward electrification, battery costs and vehicle range are two large issues that will delay this movement. These issues can be partially resolved through the use of series-hybrid vehicles, which can replace a portion of the batteries with a small engine that serves to recharge the battery. Given the size, weight, and operational constraints of this engine, a 2-stroke engine makes sense. Indeed, 2-stroke engines are currently being used for a number of applications including consumer products, small ground vehicles, boats, and drones. The technology has significantly improved to allow for reduced emissions and increased efficiency, especially through the use of direct injection. This article discusses the state of technology for 2-stroke engines and its application in series-hybrid vehicles. In particular, the use of a 2-stroke engine as a range extender provides significant benefit in range and cost over fully electric vehicles.
X