Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Emission factors evaluation in the RDE context by a multivariate statistical approach

2019-08-15
2019-24-0152
The Real Driving Emission (RDE) procedure will measure the pollutants, such as NOx, emitted by cars while driven on the road. RDE will not replace laboratory tests, such as the current WLTP but it will be added to them. RDE is complementary to the laboratory-based procedure to check the pollutant emissions level of a light-duty vehicle in real driving conditions. This means that the car will be driven on a real road according to random acceleration and deceleration patterns conditioned by traffic flow. So, the procedure will ensure that cars deliver real emissions over on-road and so the currently observed differences between emissions measured in the laboratory and those measured on road under real-world conditions, will be reduced. However, the identification of a path on the road to check the test conditions of RDE is not easy and hardly repeatable.
Standard

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles

2019-06-07
WIP
J3016

This SAE Recommended Practice describes motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis. It provides a taxonomy with detailed definitions for six levels of driving automation, ranging from no driving automation (level 0) to full driving automation (level 5), in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.

Technical Paper

Determination of Vehicle Interior Noise due to Electric Motor

2019-06-05
2019-01-1457
This paper introduces an approach that uses a statistical energy analysis (SEA) method for prediction of noise in the vehicle cabin from an electric motor sound source placed in the engine compartment. The study integrates three different physics, namely, electromagnetics, harmonics, and acoustics. A 2004 Prius permanent magnet synchronous motor with an interior permanent magnet was used for performing the integrated CAE analysis, as the motor’s design details were readily available. The Maxwell forces on the stator teeth were first calculated by an electromagnetic software package. These forces were then mapped into a finite element model of the motor stator to predict the velocity profiles on the stator frame. Velocity profiles were considered as boundary conditions to calculate sound pressure levels and the equivalent radiated sound power level in the acoustic environment.
Technical Paper

A Control Strategy to Reduce Torque Oscillation of the Electric Power Steering System

2019-06-05
2019-01-1516
This paper proposes a new evaluation method of analyzing stability and design of a controller for an electric power steering (EPS) system. The main purpose of the EPS system’s control design is to ensure a comfortable driving experience of drivers, which mainly depends on the assist torque map. However, the high level of assist gain and its nonlinearity may cause oscillation, divergence and instability to the steering systems. Therefore, an EPS system needs to have an extra stability controller to eliminate the side effect of assist gain on system stability and attenuate the unpleasant vibration. In this paper, an accurate theoretical model is built and the method for evaluating system quality are suggested. The bench tests and vehicle experiments are carried out to verify the theoretical analysis.
Technical Paper

Assessment of Automotive Environmental Noise on Mobile Phone Hands-Free Call Quality

2019-06-05
2019-01-1597
Environmental noises such as wind, road, powertrain, and HVAC noise are important aspects to consider when implementing a hands-free terminal for mobile phone calling from within a car. Traditionally, these environmental noises have been exclusively considered for driver comfort; however, with the introduction of the hands-free terminals (HFT) and increasing consumer demand relative to mobile phone call quality, a broader implication of high background noise levels should be considered. HFT algorithm development and implementation can and does provide a high level of background noise suppression to mitigate these concerns, but this is often done at the expense of computational power and cumulative delay during a phone call. The more advantageous solution would be to address the problem from a source and path perspective with emphasis on reduction of noise in the frequency bands which most influence call quality performance.
Standard

Motor Vehicle Drivers' Eye Locations

2019-05-03
WIP
J941
This SAE Recommended Practice establishes the location of drivers' eyes inside a vehicle. Elliptical (eyellipse) models in three dimensions are used to represent tangent cutoff percentiles of driver eye locations. Procedures are provided to construct 95th and 99th percentile tangent cutoff eyellipses for a 50/50 gender mix, adult user population. Neck pivot (P) points are defined in Section 6 to establish specific left and right eye points for direct and indirect viewing tasks described in SAE J1050. These P points are defined only for the adjustable seat eyellipses defined in Section 4. This document applies to Class A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100. It also applies to Class B vehicles (Heavy Trucks), although these eyellipses have not been updated from previous versions of SAE J941. The appendices are provided for information only and are not a requirement of this document.
Video

SAE Eye on Engineering: Bosch wrong way driver alert

2019-04-05
To see another driver coming straight at you, in your lane, is terrifying. In this episode of SAE Eye on Engineering, Editor-in-Chief Lindsay Brooke looks at tBosch's new cloud-based driver alert system. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show.
Technical Paper

Lap Time Simulation Tool for the Development of an Electric Formula Student Car

2019-04-02
2019-01-0163
This work details the development of a lap time simulation (LTS) tool for use by Queen’s University Belfast in the Formula Student UK competition. The tool provides an adaptable, user-friendly virtual test environment for the development of the team’s first electric vehicle. A vehicle model was created within Simulink, and a series of events simulated to generate the performance envelope of the car in the form of maximum combined lateral/longitudinal accelerations against velocity (ggv diagram). A four-wheeled vehicle including load transfer was modelled, capturing shifts in traction between each tire, which can influence performance in vehicles where the total tractive power is split between individual wheel motors. The acceleration limits in the ggv diagram were used to simulate the acceleration and endurance events at Formula Student. These events were simulated using a MATLAB code considering a point mass, quasi-steady state model with a perfect driver.
Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

A Semi-Cooperative Social Routing System to Reduce Traffic Congestion

2019-04-02
2019-01-0497
One of the ways to reduce city congestion is to balance the traffic flow on the road network and maximally utilize all road capacities. There are examples showing that, if the drivers are not competitive but cooperative, the road network usage efficiency and the traffic conditions can be improved. This motivates the idea of designing a cooperative routing algorithm to benefit most vehicles on the road. This paper presents a semi-cooperative social routing algorithm for large transportation network with predictive traffic density information. The goal is to integrate a cooperative scheme into the individual routing and achieve short traveling time not only for the traveler itself, but also for all vehicles in the road network. The most important concept of this algorithm is that the route is generated with the awareness of the total travel time added to all other vehicles on the road due to the increased congestion.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

Influence of Partial Recirculation on the Build-Up of Cabin Carbon Dioxide Concentrations

2019-04-02
2019-01-0908
Carbon dioxide exhaled by occupants remains within the cabin during operation of HVAC unit in recirculation mode. The CO2 inhaled by the occupants goes into their blood stream that negatively affects occupant’s health. ASHRAE Standard 62 specifies safe levels of carbon dioxide in conditioned space for humans. The CO2 concentration limit per ASHRAE is 700 ppm over ambient conditions on a continuous basis. In a recent investigation the author had developed a model to predict cabin carbon dioxide concentrations for recirculation mode as a function of time, number of occupants, vehicle speed, body leakage characteristics, occupant lung capacities and concentrations of the carbon dioxide coming out from occupant’s mouth, blower position and vehicle age. This developed model has been modified to simulate cabin airflows from 100% recirculation mode to 100% outside air mode, i.e., for any percentage of partial recirculation.
Technical Paper

Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing

2019-04-02
2019-01-0887
Future fully autonomous and partially autonomous cars equipped with Advanced Driver Assistant Systems (ADAS) should assure safety for the pedestrian. One of the critical tasks is to determine if the pedestrian is crossing the road in the path of the ego-vehicle, in order to issue the required alerts for the driver or even safety breaking action. In this paper, we investigate the use of 2D pose estimators to determine the direction and speed of the pedestrian crossing the road in front of a vehicle. Pose estimation of body parts, such as right eye, left knee, right foot, etc… is used for determining the pedestrian orientation while tracking these key points between frames is used to determine the pedestrian speed. The pedestrian orientation and speed are the two required elements for the basic path estimation.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Novel Glass Laminates for Improved Acoustic Performance

2019-04-02
2019-01-0395
Noise, Vibration, and Harshness (NVH) performance of vehicles is an all-encompassing study of hearing and feeling vibration as it relates to end user experience. The collection of glass in a vehicle can represent a large surface area, and can have a significant effect on NVH performance. Some of the most important glazing positions in relationship to the driver are the front doors, due to the proximity to the driver. Novel glass laminate constructions can provide acoustic improvement for these body positions over typically used standard glazings. The performance of these constructions will be discussed in terms of: acoustics, glass closing and door slam survivability, and solar performance.
Technical Paper

Energy Management Optimization for Plug-In Hybrid Electric Vehicles Based on Real-World Driving Data

2019-04-02
2019-01-0161
Excellent energy consumption performance of a plug-in hybrid electric vehicle (PHEV) is usually attributed to its hybrid drive mode. However, the factors including vehicle performance, driver behavior and traffic status have been shown to cause unsatisfactory performance. This phenomenon leads to a necessity of study on energy consumption control strategies under real-world driving conditions. This paper proposes a new approach for energy management optimization of plug-in hybrid electric vehicles based on real-world driving data for two purposes. One is for improving the energy consumption of PHEV under real-world driving conditions and the other is for reducing the computational complexity of optimization methods in simulation models. In this process, the paper collected real-world driving record data from 180 drivers within 6 months. Then the principal component analysis (PCA) was employed to extract and define the hidden factors from the initial real-world driving data.
Technical Paper

Driver’s Response Prediction Using Naturalistic Data Set

2019-04-02
2019-01-0128
Evaluating the safety of Autonomous Vehicles (AV) is a challenging problem, especially in traffic conditions involving dynamic interactions. A thorough evaluation of the vehicle’s decisions at all possible critical scenarios is necessary for estimating and validating its safety. However, predicting the response of the vehicle to dynamic traffic conditions can be the first step in the complex problem of understanding vehicle’s behavior. This predicted response of the vehicle can be used in validating vehicle’s safety. In this paper, models based on Machine Learning were explored for predicting and classifying driver’s response. The Naturalistic Driving Study dataset (NDS), which is part of the Strategic Highway Research Program-2 (SHRP2) was used for training and validating these Machine Learning models.
Technical Paper

Development and Control of Four-Wheel Independent Driving and Modular Steering Electric Vehicles for Improved Maneuverability Limits

2019-04-02
2019-01-0459
Electric vehicles are capable of more flexible drivetrain configurations, such that driving dynamics of each wheel could be controlled independently to increase its stability and maneuverability bounds. We hereby propose a configuration consisting of four wheel independent driving and front and rear axle modular steering. The vehicle implements drive-by-wire technology, which means the control program running on vehicle control computer will have direct control authority of the vehicle under normal driving conditions, based on inputs of higher level systems such as human drivers and autonomous driving programs. Both the torque allocation on four wheels and the steering allocation on axles are completely independent on the mechanical hardware level, thus the vehicle is able to harness adverse contact conditions with confidence.
Technical Paper

Drive Control Development of Switched Reluctance Motor for Compact Electric Vehicles

2019-04-02
2019-01-0460
This paper presents innovative methods to resolve the two challenges that occur when using a switched reluctance motor (SRM) as a traction motor for a compact electric vehicle (EV). Electric vehicles (EVs) are seeing a rise in popularity today and the demand for further advancement of EV technologies will continue to grow. Induction motors and interior permanent magnet motors (IPMs) are most commonly used traction motors for EVs. In this project, we focused on the development of a switched reluctance motor (SRM) as an alternative motor for compact EVs, leveraging the following benefits of SRMs: 1) SRMs, which require no permanent magnets, have no drag torque, enabling clutchless motor applications, and 2) SRMs demonstrate high efficiency in the high-speed rotation range. In applications of SRMs as EV drivers, however, there are two challenges to be resolved. The first challenge is that SRMs have significant torque ripples due to the principle of torque generation.
Technical Paper

Modelling Non Cooperative Human-Automation Interactions in a Haptic Shared Control Framework

2019-04-02
2019-01-0938
This paper addresses the interaction between the human driver and automation system in a Haptic Shared Control framework using a non-cooperative model predictive game approach. We model the human and automation’s interaction in a scenario when both driver and automation system detects an obstacle but select different paths for avoiding it. For such a situation, the effects of varying information patterns, namely the Nash and Stackelberg strategies on the shared steering angle are investigated. The simulation demonstrates the influences of the path-following weights on negotiating control authority between the human driver and the automation system.
X