Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Willingness to Learn: Elder Attitudes toward Technology

2021-07-06
Abstract The ability of senior citizens as well as other members of the general population to engage in an effective manner with technology is of increasing importance as new and innovative technologies become available. While recognizing the challenges that technologies can have on different populations, the ability to interact successfully with new technologies will, for seniors, have important consequences that can affect their quality of life and those of their families in numerous and important ways. This study, building upon previous research, examines the major dimensions of decision-making regarding attitudes toward autonomous vehicle technologies (ATVs) and their use. The study utilized data from a study of senior citizens in the Dallas-Fort Worth (DFW) area and compared the results with a sample of graduate students from a local university.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Technical Paper

Vehicle Automation Emergency Scenario: Using a Driving Simulator to Assess the Impact of Hand and Foot Placement on Reaction Time

2021-04-06
2021-01-0861
As vehicles with SAE level 2 of autonomy become more widely deployed, they still rely on the human driver to monitor the driving task and take control during emergencies. It is therefore necessary to examine the Human Factors affecting a driver’s ability to recognize and execute a steering or pedal action in response to a dangerous situation when the autonomous system abruptly requests human intervention. This research used a driving simulator to introduce the concept of level 2 autonomy to a cohort of 60 drivers (male: 48%, female: 52%) of different age groups (teens 16 to 19: 32%, adults: 35 to 54: 37%, seniors 65+: 32%). Participants were surveyed for their perspectives on self-driving vehicles. They were then assessed on a driving simulator that mimicked SAE level 2 of autonomy. Participants’ interaction with the HMI was studied.
Technical Paper

Analysis of Kinematic Response of Pediatric Occupants Seated in Naturalistic Positions in Simulated Frontal Small Offset Impacts: With and Without Automatic Emergency Braking

2021-04-02
2020-22-0002
Naturalistic driving studies have shown that pediatric occupants do not assume ideal seating positions in real-world scenarios. Current vehicle assessment programs and child restraint system (CRS) sled tests, such as FMVSS No. 213, do not account for a wide range of seating postures that are typically observed during real-world trips. Therefore, this study aims to analyze the kinematic and kinetic response of a pediatric human body model in various naturalistic seating positions in booster seats when subjected to a frontal offset impact in a full-vehicle environment, with and without the application of pre-crash automatic emergency braking (AEB). A 6YO (seated on a lowback and highback booster) and a 10YO (seated in no-CRS and on a lowback booster) PIPER pediatric human body model’s response was explored in a reference, and two most commonly observed seating postures: forward-leaning and forward-inboard-leaning.
Technical Paper

Impacts of particulate matter emissions from a highway on the neighboring population

2021-03-26
2020-36-0235
The road freight transport sector is one of the main responsible for the air pollution (as the case of particulate matter) and greenhouse gases emissions worldwide. Different types of fuel technologies have been developed in order to improve efficiency, reduce air pollution impacts, such as the case of liquefied natural gas (LNG) for heavy-duty vehicles. Many studies show the relationship between the effects of short and long-term exposure to particulate matter (PM) and, according to the World Health Organization (WHO), premature deaths worldwide as well as cardiorespiratory diseases in elderly population are related to this pollutant. In this context, this paper aims at evaluating the atmospheric dispersion of PM in a stretch of a highway (Anhanguera-Bandeirantes) in the São Paulo State in Brazil due to the road freight transport considering the use of diesel and LNG in heavy-duty vehicles and the impacts on human health. The software AERMOD designed by U.S.
Standard

Evaluation of Human Factor Considerations for Outdoor Laser Operations in the Navigable Airspace

2021-03-01
CURRENT
AIR5995A
This report identifies the reasons for, and results associated with, the conduct of a flight simulation research project evaluating the effect of low powered laser beam illumination of pilot crewmembers operating in the navigable airspace. This evaluation was primarily concerned with the possible degradation of pilot performance when illuminated by a laser while operating in an airport terminal area where pilot workloads are normally at their maximum.
Journal Article

Development of Data Mining Methodologies to Advance Knowledge of Driver Behaviors in Naturalistic Driving

2020-12-31
Abstract This article presents data mining methodologies designed to support data-driven, long-term, and large-scale research in the areas of in-vehicle monitoring, learning, and assessment of older adults’ driving behavior and physiological signatures under a set of well-defined driving scenarios. The major components presented in the article include the instrumentation of an easily transportable vehicle data acquisition system (VDAS) designed to collect multimodal sensor data during naturalistic driving, an ontology that enables the study of driver behaviors at different levels of integration of semantic heterogeneity into the driving context, and a driving trip segmentation algorithm for automatically partitioning a recorded real-world driving trip into segments representing different types of roadways and traffic conditions.
Technical Paper

Influence of Autonomous Vehicles on Short and Medium Distance Mode Choice for Intercity Travel

2020-12-30
2020-01-5200
In order to study the influence of autonomous vehicles on short and medium distance mode choice for intercity travel, this paper incorporates the latent psychological variables that affect the choice behavior of autonomous vehicles into the latent class conditional logit model and establishes a hybrid choice model to conduct the empirical research based on the theory of planned behavior. The results show that compared with the traditional multinomial logit model, the latent class conditional logit model has higher fitting goodness. Travelers can be divided into three subgroups: class1, class2, and class 3, accounting for 40.7%, 24.4%, and 34.9%, respectively. At a 5% confidence level, gender, education, occupation, monthly household income, children, and IC card significantly affect the sample’s latent class.
Journal Article

Evaluating the Relationship between Instrument Cluster Design, User Preference, and Driving Behavior among Demographic Groups

2020-10-29
Abstract Contemporary research has found differences between demographic groups in their stated instrument cluster component design preferences. For instance, elderly drivers prefer large icons and textual displays of information, while younger drivers preferred gauges to display information. The purpose of this study was to evaluate whether instrument clusters, designed for specific demographic groups, would facilitate safe driving behavior and solicit higher evaluation scores in their targeted demographics. Fifty participants, consisting of 30 elderly and 20 younger drivers (gender-balanced), completed a series of tasks to retrieve information from the instrument cluster while driving a high-fidelity simulator. Participants’ driving behavior, response time, subjective ratings, and a semi-structured post-experimental interview on different cluster designs were collected to evaluate each instrument cluster design.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Book

Stapp Car Crash Journal Vol. 63, 2019

2020-06-01
This title includes the technical papers developed for the 2019 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes.
Technical Paper

Morphing an Existing Open Source Human Body Model into a Personalized Model for Seating Discomfort Investigation

2020-04-14
2020-01-0874
Computational finite element (FE) human body models (HBM) are used to estimate internal loads and soft tissue deformation, which cannot be easily measured experimentally, for seating discomfort investigation. However, most existing models only represent a limited number of body sizes and postures and cannot be easily personalized and repositioned, which limits their applicability. In recent years, an open source software package has been developed within the European project PIPER (available at www.PIPER-project.org) to help personalize and to position an HBM used for crash injury simulation. In addition to the personalizing and positioning tools, a child model has also been developed and is also now available. The present study aims to derive an adult male HBM to study seating discomfort from the PIPER Child model using the PIPER personalizing tools and information with external body shape and partial internal skeleton of an adult as targets.
Technical Paper

Height Adjustment in School Bus Seat to Improve Comfort of Children with Different Age Group

2020-04-14
2020-01-0871
Seats are one of the critical component of school bus for children’s comfort & safety. Seat foam thickness, its shape, cushion width & seat height will play a vital role in comfort. Fatigue is the common cause due to uncomfortable seating and it is due to only one type of seat available in school buses to accommodate different height children. (here different height means; schools have children from class nursery to senior secondary). Fatigue will cause impact on children’s health & overall development. The topic was chosen because of increasing concerns in children’s comfort & safety in school buses. In existing design, standard seat with cushion height from bus floor is 450mm. In this case, it’s only suitable for children height of 4.5 feet to 5.5 feet. Ergonomically, it is very difficult to climb on the seat for range of children height from 3 feet to 4feet.
Technical Paper

Characterization of Thoracic Spinal Development by Age and Sex with a Focus on Occupant Safety

2020-04-14
2020-01-0520
Spine degeneration can lower injury tolerance and influence injury outcomes in vehicle crashes. To date, limited information exists on the effect of age and sex on thoracic spine 3-dimensional geometry. The purpose of this study is to quantify thoracic spinal column and canal geometry using selected geometrical measurement from a large sample of CT scans. More than 33,488 scans were obtained from the International Center for Automotive Medicine database at the University of Michigan under Institutional Review Board approval (HUM00041441). The sample consisted of CT scans obtained from 31,537 adult and 1,951 pediatric patients between the ages of 0 to 99 years old. Each scan was processed semi-automatically using custom algorithms written in MATLAB (The Math Works, Natick, MA). Five geometrical measurements were collected including: 1) maximum spinal curvature depth (D), 2) T1-to-T12 vertical height (H), 3) Kyphosis Index (KI), 4) kyphosis angle, and 5) spinal canal radius.
Technical Paper

Drowsy Driver & Child Left Behind - Prevention via in Cabin CO2 Sensing

2020-04-14
2020-01-0573
Can one technical solution help prevent drowsy drivers and detect a child left behind? Yes, using a single, maintenance-free, Non-Dispersive Infrared (NDIR) gas sensor integrated in the cabin ventilation system. Carbon dioxide (CO2) is an established proxy for ventilation needs in buildings. Recently, several studies have been published showing a moderate elevation of the indoor carbon dioxide level effect cognitive performance such as information usage, activity, focus and crisis response. A study of airplane pilots using 3-hour flight simulation tests, showed pilots made 50% more mistakes when exposed to 2,500 ppm carbon dioxide compared to 700 ppm. This has a direct impact on safety. All living animals and humans exhale carbon dioxide. In our investigations we have found that an unintentionally left behind child, or pet, can easily be detected in a parked car by analyzing the carbon dioxide trends in the cabin.
Technical Paper

Update on Second-Row Children Responses in Rear and Frontal Crashes with a Focus on the Potential Effect of Stiffening Front Seat Structures

2020-04-14
2020-01-1215
NHTSA has recently been petitioned to address the protection of second-row children in rear crashes due front seatback performance. The protection of children is important. However, it is more complex than assessing front seat performance in rear impacts. Viano, Parenteau (2008 [1]) analyzed cases of serious-to-fatally injured (MAIS 3+F) children up to 7 years old in the second row in rear impacts involving 1990+ model year vehicles using 1997-2005 NASS-CDS. They observed that intrusion was an important factor pushing the child forward into the back of the front seat, B-pillar or other front structure. To help assess whether stiffening the front seats would be beneficial for second-row child safety, the 2008 study was updated using more recent data and model year vehicles. In the present study, 1997-2015 NASS-CDS data were analyzed for serious-to-fatally (MAIS 3+F) injured 0- to 7-year old children in the second row with 1994+ model year vehicles.
Technical Paper

Accuracy of Anthropometric Scaling: Using Stature to Estimate Body Segment Lengths

2020-04-14
2020-01-0523
In the fields of forensic accident reconstruction and biomechanical engineering, it is often necessary to estimate the length of a specific body segment for an individual, about whom little is known besides overall stature. Since body proportions and body segment lengths vary throughout the population, there will be some error in these estimations. The current study provides estimates for the accuracy of human body segment length predictions based on stature. In this study, four different methods for predicting body segment lengths based on stature were evaluated. Using publicly available adult and child anthropometric datasets, a leave-one-out cross validation analysis was conducted to evaluate the accuracy of each of the four methods in predicting body segment lengths. The results of the leave-one-out analysis showed that different prediction methods produced the best estimates for different body segment length measurements.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Biofidelic Evaluation of the Large Omni-Directional Child Anthropomorphic Test Device in Low Speed Loading Conditions

2020-03-31
2019-22-0009
Motor vehicle crashes remain the leading cause of death for children. Traditionally, restraint design has focused on the crash phase of the impact with an optimally seated occupant. In order to optimize restrain design for real-world scenarios, research has recently expanded its focus to non-traditional loading conditions including pre-crash positioning and lower speed impacts. The goal of this study was to evaluate the biofidelity of the large omni-directional child (LODC) ATD in non-traditional loading conditions by comparing its response to pediatric volunteer data in low-speed sled tests. Low-speed (2-4 g, 1.9-3.0 m/s) frontal (0°), far-side oblique (60°), and far-side lateral (90°) sled tests, as well as lateral swerving (0.72 g, 0.5 Hz) tests, were conducted using the LODC. The LODC was restrained using a 3-point-belt with an electromechanical motorized seat belt retractor, or pre-pretensioner. Motion capture markers were placed on the head, torso, and belt.
X