Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

How to Improve SI Engine Performances by Means of Supercritical Water Injection

2019-09-15
2019-24-0235
The efficiency of ICEs is strongly affected by the heat losses of exhaust gases and engine cooling system, which account for about 60% of the heat released by combustion. Several technologies were developed to recover waste heat in ICEs, from turbochargers to ORCs, Stirling cycles and piezoelectric generation. A promising approach is to transfer the waste heat to a fluid, like water, and inject it into the combustion chamber. In such a way, the recovered energy is partially converted into mechanical work, by improving both engine efficiency and performance. In this work, the engine benefits obtained by using supercritical water as the vector to recover heat losses are analysed. Water has been chosen since it has a relatively high heat capacity and can be extracted directly from exhaust gases. A quasi-dimensional model has been implemented to simulate the ICE work cycle. Specifically, in this paper a spark ignition ICE, four-stroke with port fuel injection (PFI) has been considered.
Technical Paper

Knock Mitigation by Means of Coolant Control

2019-09-09
2019-24-0183
The potentiality of knock mitigation by means of the control of the coolant flow rate is investigated. As a first step, the dynamic behavior of the wall temperature in response to a sudden variation of the coolant flow rate is analyzed experimentally in a small displacement, 4-valve per cylinder SI engine, which is equipped with an electrically driven pump. Subsequently, the influence of the wall temperature on knock onset is analyzed through a zero-dimensional model and the Livengood and Wu integral. Finally, an experimental activity on the engine test bed is carried-out in order to evaluate the influence of the coolant flow rate and of the engine inlet coolant temperature on the knock phenomenon. Results show that, even though a retarded spark advance and a mixture enrichment are not avoidable in the early stage of knock onset, a cooling control can help reducing the time of use of these fuel consuming strategies in the case of prolonged high-load conditions.
Technical Paper

Experimental Investigation on the Use of Argon to Improve FMEP Determination Through Motoring Method

2019-09-09
2019-24-0141
Mechanical friction is still one of the current topics in internal combustion engine research and development. In the ever increasing challenge of developing more efficient and less polluting engines, friction reduction is of significant importance; whose investigation needs an accurate and reliable measurement technique. The Pressurized Motoring method is one of the techniques used for both friction and heat transfer measurements in internal combustion engines. This method is able to simulate mechanical loading on the engine components similar to the fired conditions. It also allows measurement of friction mean effective pressure (FMEP) with a much smaller uncertainty as opposed to that achieved from a typical firing setup. Despite its advantages, this method of FMEP determination is usually criticized over the fact that the thermal conditions imposed in pressurized motoring are far detached from those seen in fired conditions, hence not able to simulate the complete effects on FMEP.
Technical Paper

Oxy-Fuel HCCI Combustion in a CFR Engine with Carbon Dioxide as a Thermal Buffer

2019-09-09
2019-24-0119
A basic formula inspired by the Otto engine cycle shows that the thermodynamic efficiency of the engine increases as the mixture specific heat ratio and compression ratio increase. Homogenous charge compression ignition (HCCI) engines allow the combustion of a lean mixture at relatively higher compression ratios increasing the thermodynamic efficiency. At the same time, it is also a low temperature combustion and this means lower NOx emissions. One way to increase the thermodynamic efficiency of the engine is to increase the specific heat ratio by replacing the nitrogen in the oxidizer by a monoatomic gas that has the highest possible specific heat ratio. However, higher specific heat ratio results in elevated cylinder temperature and pressure leading to engine knock. The compression ratio is thus decreased to avoid this phenomenon. Also, elevated engine temperature will oxidize any nitrogen (no matter how small) forming undesired NOx emissions.
Technical Paper

Temperature Measurements of the Piston surface in a Research Compression Ignition Engine in Transient Conditions for 1d Model of Heat Transfer

2019-09-09
2019-24-0182
Analysis of heat losses in internal combustion engines (ICEs) is fundamental to evaluate and improve the engine efficiency. Detailed and reliable heat transfer models are required for more complex 1d-3d combustion models. At the same time, the thermal status of engine components, as pistons, is needed for an efficient design. Measurements of piston temperature during ICEs operation represent a precious and challenging result to get for the aforementioned purposes. In previous works, the authors, first, evaluated and, then, measured the temperature of the optical window in a research compression ignition engine via thermal imaging and thermocouple installation, respectively. The tests concerned steady state and transient conditions.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of test benches within the framework of research and development projects directly correlates with the "health" of the examinee to be investigated. The use of so-called Early Damage Detection Systems (EDDS) is becoming increasingly popular for reasons of Unit Under Test (UUT) monitoring. In the context of this publication the expectations of an EDDS and its structure are discussed as well as its advantages and disadvantages in test bench operation analyzed and compared with the results of measurements. The used EDDS should primarily prevent the damage, up to the loss of the test object by a total loss, in order to ensure a finding possibility of the damaged part at the examined test object. A deviation of the test object behavior from the undamaged condition must be recognized in an early status and must lead to a shutdown of the test bench operation after reaching a defined limit value.
Technical Paper

A Coupled Lattice Boltzmann-Finite Volume Method for the Thermal Transient Modeling of an Air-Cooled Li-ion Battery Module for Electric Vehicles

2019-09-09
2019-24-0207
Due to their ability to store higher electrical energy, lithium ion batteries are the most promising candidates for electric and hybrid electric vehicles, whose market share is growing fast. Heat generation during charge and discharge processes, frequently undergone by these batteries, causes temperature increase and thermal management is indispensable to keep temperature in an appropriate level. In this paper, a coupled Lattice Boltzmann-Finite Volume model for the three-dimensional transient thermal analysis of an air-cooled Li-ion battery module is presented. As it has already been successfully used to deal with several fluid dynamics problems, the Lattice Boltzmann method is selected for its simpler boundary condition implementation and complete parallel computing, which make this approach promising for such applications.
Technical Paper

Heat Transfer Characterization of Catalytic Converter Substrates During Warm-Up

2019-09-09
2019-24-0163
The transient heat transfer behavior of a real size automotive catalytic reactor has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO and C3H6 oxidations, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters have been chosen based on the tuning of experimental data. The impact of different initial catalytic converter temperatures, inlet flow temperatures and inlet flow rates have been quantified, even in terms of overall cumulative emissions. . A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinate are defined. Using this suitably modified coordinates, for the case of negligible axial solid conduction, computed solid temperature at the reactor outlet lay on the typical S-curve.
Technical Paper

Development and Validation of SI Combustion Models for Natural-Gas Heavy-Duty Engines

2019-09-09
2019-24-0096
Flexible, reliable and consistent combustion models are necessary for the improvement of the next generation spark-ignition engines. Different approaches have been proposed and widely applied in the past. However, the complexity of the process involving ignition, laminar flame propagation and transition to turbulent combustion need further investigations. Purpose of this paper is to compare two different approaches describing turbulent flame propagation. The first approach is the one-equation flame wrinkling model by Weller, while the second is the Coherent Flamelet Model (CFM). Ignition is described by a simplified deposition model while the correlation from Herweg and Maly is used for the transition from the laminar to turbulent flame propagation. Validation of the proposed models was performed with experimental data of a natural-gas, heavy duty engine running at different operating conditions.
Technical Paper

CFD Modeling of Compact Heat Exchangers for I.C. Engine Oil Cooling

2019-09-09
2019-24-0179
In the last years, the increase of the specific power of the modern engines has required a parallel improvement of the performances of the cooling system. In this context, also the control of the oil temperature has become an important issue, leading to the introduction of dedicated cooling circuits (air-cooled or liquid-cooled). Among the two, the liquid-cooled solution results in a more compact installation in which the oil-to-liquid heat exchanger is directly mounted on the engine block and integrated in the engine cooling system. It is clear that, in a liquid-cooled solution, the design of the heat exchanger represents an issue of extreme concern, which requires a compromise between different objectives: high compactness, low pressure drop, high heat-transfer efficiency. In this work, a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins as heat transfer enhancer (turbolator), has been developed.
Technical Paper

Validity of a Steady-State Friction Model for Determining CO2 Emissions in Transient Driving Cycles

2019-09-09
2019-24-0054
Due to its high benefit-cost ratio, decreasing mechanical friction losses in internal combustion engines represents one of the most effective and widely applicable solutions for improved engine efficiency. Especially the piston group – consisting of piston, rings and pin – shows significant potential for friction reduction, which can be evaluated through extensive experimental parameter studies. For each investigated variant, the steady-state friction measurements are fitted to an empirical polynomial model. In order to calculate the associated fuel consumption and CO2 emissions in transient driving cycles, the steady-state friction model is used in a map-based vehicle simulation. If transient engine operation entails friction phenomena that are not included in the steady-state model, the simulation could yield erroneous fuel consumption and CO2 predictions.
Technical Paper

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing a Production SACI Strategy

2019-09-09
2019-24-0027
Low temperature combustion (LTC) strategies have been a keen interest in the automotive industry for over four decades since they offer improved fuel efficiency compared to conventional spark-ignition (SI) engines. LTC strategies use high dilution to keep combustion temperatures below about 2000 K to reduce heat transfer losses while avoiding locally rich in-cylinder regions that produce high soot. High dilution also enables an efficiency improvement from reduced pumping work and improved thermodynamic properties, though it requires high ignition energy. Combustion can be achieved by triggering autoignition from compression energy. High compression ratios are typically required to produce this level of ignition energy, which further improves fuel efficiency. The timing of the autoignition event is influenced by fuel properties and mixture composition, and is exponentially sensitive to temperature.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions Under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The prediction of the pollutants emitted by internal combustion engines during driving cycles has been a challenge since the introduction of the emission regulation legislation. During the last decade, along with the more tightening limits and increased public concern about the matter of air quality, the possibility of simulating various driving tests with cost effective computing facilities has become a key feature for modern simulation codes. Many 1D simulation tools are available on the market, offering real time models capable of achieving the simulation of any driving cycle in limited time frames. These approaches are based on the extreme simplification of the engine geometry and on the adoption of engine maps, which, for any engine operating condition, give the engine output in terms of power, or torque, and of exhaust gas composition.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro IV Heavy-Duty Diesel Engine with High EGR-Rates, an In-cylinder Peak Pressure of 250 bar and an Injection Pressure up to 2500 bar

2019-09-09
2019-24-0171
A raise of efficiency is, especially for CV, the strongest selling point concerning the TCO. Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. The losses resulting from taking real gas properties and non-ideal combustion into account have only a limited potential for gains, wall heat losses are currently believed to have the highest optimization potential. Critical for the occurrence of these losses is the wall heat transfer, which can be described by coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is needed to determine the WHT relations at the combustion chamber of an engine. Methods to reduce the WHT can be developed and their effectiveness can be evaluated.
Technical Paper

Performance and Emissions of an Advanced Multi-Cylinder SI Engine Operating in Ultra-Lean Conditions

2019-09-09
2019-24-0075
Along the design process of a new engine, the calibration phase at the test bench usually involves a relevant percentage of the overall time-to-market. Each control variable, in fact, needs to be properly selected to optimize the performance and emissions, complying with thermal and mechanical stresses limits of the engine. This issue is still more critical for advanced engine architectures, which include additional control variables, such as valve phasing, turbocharger control, EGR level, etc. The aim of this work is the development of a numerically performed calibration procedure, applied to a prototype multi-cylinder Spark Ignition (SI) engine, designed to operate at very lean mixtures. To this aim, an active Pre-Chamber ignition system is considered. The required air flow rate is indeed provided by a Low-Pressure (LP) variable geometry turbocharger group, coupled to a high-pressure e-compressor.
Technical Paper

Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine

2019-09-09
2019-24-0091
New technologies are required to improve engine thermal efficiency. For this it is necessary to use all the tools available nowadays, in particular computational tools, which allow testing the viability of different solutions at reduced cost. In addition, numerical simulations often provide more complete and precise information than experimental tests. Such is the case for the study of the heat transfer through the walls of an engine. Conjugate Heat Transfer (CHT) simulations permit precise calculations of the heat transfer rate from gas to walls throughout the whole engine cycle, and thus it is possible to know such details as the instantaneous heat losses and wall temperature distribution on the walls, which no experiment can give. Nevertheless, it is important to validate CHT calculations, either with some experimental measurements or with some other reliable tool, such as 0D-1D modelling known to work well.
Technical Paper

A Practical Recuperated Split Cycle Engine for Low Emissions and High Efficiency

2019-09-09
2019-24-0190
The Recuperated Split Cycle Engine is a new type of ICE, offering a step change in efficiency and tailpipe emissions. It targets the heavy duty, long-haul sector (trucks, rail, shipping), where electrification is most challenging, and distributed generation, where capacity is required to support rising electrification. The engine separates cold (induction, compression) and hot (combustion, expansion) parts of the cycle; waste exhaust heat is recovered between them via a recuperator, as in a recuperated gas turbine. Recent research presented in another paper at this conference shows that the sonic airflows seen in the induction event give rise to extraordinary fuel mixing and clean, cool combustion, with potential for after-treated emission levels between SULEV and zero-impact (either unmeasurable or below ambient). However, recuperation and thermal insulation of the hot cylinder also enable high thermal efficiency, with a much flatter efficiency map than a conventional ICE.
Technical Paper

Design of a Hybrid Power Unit for Formula SAE Application: Packaging Optimization and Thermomechanical Design of the Electric Motor Case

2019-09-09
2019-24-0197
This paper presents the development of a parallel hybrid power unit for Formula SAE application. In particular, the system is made up of a brand new, single-cylinder 480 cc internal combustion engine developed on the basis of the Ducati “959 Superquadro” V90 2-cylinder engine. The thermal engine is assisted by a custom electric motor (30 kW), powered by a Li-Ion battery pack. The performance of the ICE has been optimized through CFD-1D simulation (a review of this activity is reported in a parallel paper). The main design goal is to get the maximum amount of mechanical energy from the fuel, considering the car typical usage: racing on a windy track. The Ducati “959 Superquadro” engine is chosen because of its high power-to-weight ratio, as well as for its V90 2-cylinder layout.
X