Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Methodology to Enhance Design and On-Board Application of Neural Network Models for Virtual Sensing of Nox Emissions in Automotive Diesel Engines

2013-09-08
2013-24-0138
The paper describes suited methodologies for developing Recurrent Neural Networks (RNN) aimed at estimating NOx emissions at the exhaust of automotive Diesel engines. The proposed methodologies particularly aim at meeting the conflicting needs of feasible on-board implementation of advanced virtual sensors, such as neural network, and satisfactory prediction accuracy. Suited identification procedures and experimental tests were developed to improve RNN precision and generalization in predicting engine NOx emissions during transient operation. NOx measurements were accomplished by a fast response analyzer on a production automotive Diesel engine at the test bench. Proper post-processing of available experiments was performed to provide the identification procedure with the most exhaustive information content. The comparison between experimental results and predicted NOx values on several engine transients, exhibits high level of accuracy.
Journal Article

Rule-Based Optimization of Intermittent ICE Scheduling on a Hybrid Solar Vehicle

2009-09-13
2009-24-0067
In the paper, a rule-based (RB) control strategy is proposed to optimize on-board energy management on a Hybrid Solar Vehicle (HSV) with series structure. Previous studies have shown the promising benefits of such vehicles in urban driving in terms of fuel economy and carbon dioxide reduction, and that economic feasibility could be achieved in a near future. The control architecture consists of two main loops: one external, which determines final battery state of charge (SOC) as function of expected solar contribution during next parking phase, and the second internal, whose aim is to define optimal ICE- EG power trajectory and SOC oscillation around the final value, as addressed by the first loop. In order to maximize the fuel savings achievable by a series architecture, an intermittent ICE scheduling is adopted for HSV. Therefore, the second loop yields the average power at which the ICE is operated as function of the average values of traction power demand and solar power.
Journal Article

Development of recurrent neural networks for virtual sensing of NOx emissions in internal combustion engines

2009-09-13
2009-24-0110
The paper focuses on the experimental identification and validation of recurrent neural networks (RNN) for virtual sensing of NO emissions in internal combustion engines (ICE). Suited training procedures and experimental tests are proposed to improve RNN precision and generalization in predicting NO formation dynamics. The reference Spark Ignition (SI) engine was tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. A fast response analyzer was used to measure NO emissions at the exhaust valve. The accuracy of the developed RNN model is assessed by comparing simulated and experimental trajectories for a wide range of operating scenarios. The results evidence that RNN-based virtual NO sensor will offer significant opportunities for implementing on-board feedforward and feedback control strategies aimed at improving the performance of after-treatment devices.
Journal Article

Development and Real-Time Implementation of Recurrent Neural Networks for AFR Prediction and Control

2008-04-14
2008-01-0993
The paper focuses on the experimental identification and validation of recurrent neural networks (RNN) for real-time prediction and control of air-fuel ratio (AFR) in spark-ignited engines. Suited training procedures and experimental tests are proposed to improve RNN precision and generalization in predicting both forward and inverse AFR dynamics for a wide range of operating scenarios. The reference engine has been tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. The comparison between RNNs simulation and experimental trajectories showed the high accuracy and generalization capabilities guaranteed by RNNs in reproducing forward and inverse AFR dynamics. Then, a fast and easy-to-handle procedure was set-up to verify the potentialities of the inverse RNN to perform feed-forward control of AFR.
Technical Paper

Experimental Validation of a Neural Network Based A/F Virtual Sensor for SI Engine Control

2006-04-03
2006-01-1351
The paper addresses the potentialities of Recurrent Neural Networks (RNN) for modeling and controlling Air-Fuel Ratio (AFR) excursions in Spark Ignited (SI) engines. Based on the indications provided by previous studies devoted to the definition of optimal training procedures, an RNN forward model has been identified and tested on a real system. The experiments have been conducted by altering the mapped injection time randomly, thus making the effect of fuel injection on AFR dynamics independent of the other operating variables, namely manifold pressure and engine speed. The reference engine has been tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. The developed forward model has been used to generate a reference AFR signal to train another RNN model aimed at simulating the inverse AFR dynamics by evaluating the fuel injection time as function of AFR, manifold pressure and engine speed.
Technical Paper

Nonlinear Recurrent Neural Networks for Air Fuel Ratio Control in SI Engines

2004-03-08
2004-01-1364
The paper deals with the use of Recurrent Neural Networks (RNNs) for the Air-Fuel Ratio (AFR) control in Spark Ignition (SI) engines. Because of their features, Neural Networks can perform an adaptive control more efficiently than classical techniques. In the paper, a review of the most useful control schemes based on Neural Networks is presented and the potential use in the field of engine control is analyzed. A preliminary controller has been implemented making use of a Direct Inverse Modeling approach. The controller compensates for the wall wetting dynamics and estimates the right amount of fuel to be injected to meet the target AFR during engine transients. The Direct Inverse Controller has been tested within an engine/vehicle simulator. The simulation tests have been performed by imposing a set of throttle transients at different engine speeds. The results show that the Inverse Model can satisfactorily bound the AFR excursions around the target value.
X