Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

ADAS Application Automatic Emergency Braking

2024-09-19
Active safety and (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic emergency braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives.
Training / Education

Introduction to Brake Control Systems ABS, TCS, and ESC

2024-09-19
Electronic brake control systems are required standard equipment on cars and trucks. Vehicles benefit from optimized braking, enhanced acceleration, and improved stability that these systems provide. The instructor introduces participants to system-level design considerations, vehicle interface requirements, and inevitable performance compromises that need to be addressed when implementing these technologies. Participants will begin by defining the tire-road interface and analyzing fundamental vehicle dynamics.
Training / Education

Fundamentals of Steering Systems

2024-08-13
Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive course participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the contact patch are converted to a torque at the pinion.
Technical Paper

Charging infrastructure for employer parking – Real data analysis and charging algorithms for future customer demands

2024-07-02
2024-01-2980
The mobility industry and the entire ecosystem is currently striving towards sus-tainable mobility which leads to continuous production ramp-up of electrified vehicles. The parallel increase of the charging infrastructure is faced with various challenges regarding needed investments and the connection into the electricity grid. MAHLE chargeBIG offers centralized and large scaled charging infrastruc-ture with more than 1,800 already installed charging points. This presentation and paper is evaluating the functionality of the system by ana-lyzing backend real data of various employer parking installations. It can be shown and proven that a single-phase charging concept is sufficient and able to manage most customer relevant charging events by considering the needs and limitations of the related electricity grid infrastructure. Smart charging algorithms enable the integration of the charging infrastructure in smart grid company environments.
Technical Paper

Additively manufactured wheel suspension system with integrated conductors and optimised structure

2024-07-02
2024-01-2973
Increasing urbanisation and the growing environmental awareness in society require new and innovative vehicle concepts. In the present work, the design freedoms of additive manufacturing (AM) are used to develop a front axle wheel suspension for a novel modular vehicle concept. The development of the suspension components is based on a new method using industry standard load cases for the strength design of the components. To design the chassis components, first the available installation space is determined and a suitable configuration of the chassis components is defined. Furthermore, numerical methods are used to identify component geometries that are suitable for the force flow. The optimisation setup is selected in a way that allows to integrate information, energy and material-carrying conductors into the suspension arms. The conductors even serve as load-bearing structures because of the matching design of the components.
Technical Paper

Optimization-Based Battery Thermal Management for Improved Regenerative Braking in CEP Vehicles

2024-07-02
2024-01-2974
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold the maximum recuperation power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low under cold ambient conditions. Without active conditioning of the battery, potential regenerative energy is lost as a result of the cold battery.
Technical Paper

Steering system with mechanical coupling of the wheels and the possibility of steering both wheels in opposite directions

2024-07-02
2024-01-2970
In the course of the U-Shift project, an automated, driverless and electrically driven vehicle concept is developed. By separating the vehicle into a drive module and a transport capsule, a novel form of mobility is created. The autonomous driving module, the so-called Driveboard, is able to change the transport capsules independently and thus serves both passenger and goods transport. In order to be able to use the vehicle effectively, especially in urban areas, the space required for manoeuvring and loading or unloading the capsules must be kept as small as possible. This poses special challenges for the steering system. In this paper, a novel steering system is presented that enables both same-direction and opposite-direction wheel steering. First, the fundamental concept of the steering system is presented. After that, the design is explained and the assembled steering system is shown. During normal cornering, there is a mechanical coupling between the wheels.
Technical Paper

Evaluation and simulation of wheel steering functionality on a Road to Rig test bench

2024-07-02
2024-01-3000
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventive identify potential issues. This paper proposes an advancement test approach in the area of the overall vehicle system included steering system and power train on a “Road to Rig” test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
X