Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Anti-Rollover Control for All-Terrain Vehicle Based on Zero-Moment Point

2024-04-30
2024-01-5055
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability.
Standard

OnQue Digital Standards System - Standards

2024-04-23
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Technical Paper

Mathematical Model for the Rotation of a Door Including Vehicle Inclination

2024-04-17
2024-01-5045
The analysis presented in this document demonstrates the mathematical model approach for determining the rotation of a door about the hinge axis. Additional results from the model are the torque due to gravity about the axis, opening force, and the door hold open check link force. Vector mechanics, equations of a plane, and parametric equations were utilized to develop this model, which only requires coordinate points as inputs. This model allows for various hinge axis angles and door rotation angles to quickly be analyzed. Vehicle pitch and roll angles may also be input along with door mass to determine the torque about the hinge axis. The vector calculations to determine the moment arm of the door check link and its resulting force are demonstrated for both a standard check link design and an alternate check link design that has the link connected to a slider translated along a shaft.
Technical Paper

Developing an Automated Vehicle Research Platform by Integrating Autoware with the DataSpeed Drive-By-Wire System

2024-04-09
2024-01-1981
Over the past decade, significant progress has been made in developing algorithms and improving hardware for automated driving. However, conducting research and deploying advanced algorithms on automated vehicles for testing and validation remains costly, especially for academia. This paper presents the efforts of our research team to integrate the newest version of the open-source Autoware software with the commercially available DataSpeed Drive-by-Wire (DBW) system, resulting in the creation of a versatile and robust automated vehicle research platform. Autoware, an open-source software stack based on the 2nd generation Robot Operating System (ROS2), has gained prominence in the automated vehicle research community for its comprehensive suite of perception, planning, and control modules. The DataSpeed DBW system directly communicates with the vehicle's CAN bus and provides precise vehicle control capabilities.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

Energy Dissipation Characteristics Analysis of Automotive Vibration PID Control Based on Adaptive Differential Evolution Algorithm

2024-04-09
2024-01-2287
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared.
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
Technical Paper

Influence of Microstructure on CFD Simulation of Water Removal in a PEM FC Channel

2024-04-09
2024-01-2181
Water removal from Proton Exchange Membrane (PEM) Fuel Cell (FC) mainly involves two phenomena: some of the emerging droplets will roll on the Gas Diffusion Layer (GDL), others may impact channel walls and start sliding along the airflow direction. This different behaviour is linked to the hydrophobic/hydrophilic nature of the surface the water is moving on. In this paper, the walls of the channel of a FC were characterized by applying optical techniques. The deposition of droplets on the channel wall led to an evaluation of the proper range for Contact Angle Hysteresis (CAH = 55° - 45°), and due to the high wettability of the surface, droplets dimension was defined with a dimensionless parameter B/H. Under high crossflow condition (15 m/s) a sliding behaviour was observed. The channel features determined through image processing were used as boundary conditions for a 2D CFD two phase simulation employing the Volume of Fluid (VOF) model to keep track of the fluids interface.
Technical Paper

Advanced Development of e-HMI Road Content Projection Headlamp

2024-04-09
2024-01-2232
Recently, with the advancement of autonomous driving technology, the function of external lamps has been changed. Previously, the focus was on the visibility of drivers, but with the advancement of autonomous driving technology, the concept of autonomous driving systems has been developed. Accordingly, the trend of automotive lamp lighting systems has been developed in terms of design, e-HMI (exterior-human machine interface), It is developing in accordance with three major fields such as sensor connection. Therefore, this paper will cover the prior development of road content projection headlamps that enable e-HMI implementation to reflect these new trends. Since the technology is mass-produced and sold by several manufacturers, our company also needs to quickly develop and apply the technology in advance. Only four types of symbols are allowed in European law.
Technical Paper

Performance of Headlights Fitted with LED Replacement Bulbs

2024-04-09
2024-01-2230
To ensure adequate visibility without excessive glare, vehicle headlights are designed to use a specific source of illumination. The optical designs of headlights gather the luminous flux produced by the light source to produce a useful beam pattern that meets the relevant requirements and standards for vehicle forward lighting. With the advent of solid state, light emitting diode sources for general illumination, an increasing number of LED replacement headlight bulb products has emerged over the past decade. In most cases, these LED replacement bulbs are not permitted for legal use on public roadways, but some countries have begun to permit specific LED replacement bulbs to be used legally on the road for specific makes, models and production years of certain vehicles. If they can be demonstrated to produce a beam pattern that meets the photometric requirements for a legal headlight, they are permitted to be used legally for on-road use.
Technical Paper

Digital Twin Based Multi-Vehicle Cooperative Warning System on Mountain Roads

2024-04-09
2024-01-1999
Compared with urban areas, the road surface in mountainous areas generally has a larger slope, larger curvature and narrower width, and the vehicle may roll over and other dangers on such a road. In the case of limited driver information, if the two cars on the mountain road approach fast, it is very likely to occur road blockage or even collision. Multi-vehicle cooperative control technology can integrate the driving data of nearby vehicles, expand the perception range of vehicles, assist driving through multi-objective optimization algorithm, and improve the driving safety and traffic system reliability. Most existing studies on cooperative control of multiple vehicles is mainly focused on urban areas with stable environment, while ignoring complex conditions in mountainous areas and the influence of driver status. In this study, a digital twin based multi-vehicle cooperative warning system was proposed to improve the safety of multiple vehicles on mountain roads.
Technical Paper

Design of a Double Wishbone Baja SAE Suspension System

2024-04-09
2024-01-2074
The Baja SAE Completion is an extreme off roading event that requires an effective suspension design to survive the many obstacles that make up the racecourses. Without an effective suspension the many participating teams will experience poor performance or even failure within their suspension. This research focuses on the development and optimization of a double wishbone suspension in both the front and rear. Additionally, the design and optimization of a sway bar attached to the rear suspension will be gone through. Both the front and rear suspension will be optimized through three simulations heave, roll, and steering through the use of Optimum Kinematics. The process for placing the coilovers to ensure they will move perpendicular to control arms throughout their travel and ensuring the coilovers length in fully compression and extension are not exceeded will be developed through the use of SolidWorks and Optimum Kinematics.
Technical Paper

Polymeric Compounds with Cellulose Nanofibrils for 3D Printing Applications

2024-04-09
2024-01-2576
A systematic review based on the PRISMA protocol was used to evaluate compounds developed for 3D printing with the incorporation of cellulose nanofibrils into polymers to be used in the automotive sector. The processing parameter is a data of great relevance for the development of durable structural parts and this study can be carried out using the state of the art on this subject. This way, the research was carried out using a search strategy from three different databases (Web of Science, Scopus and Science Direct) limiting studies between the years 2019 and 2023. The keywords used in these searches were: "3D Print" OR "FDM" OR "Fused Deposition Modeling" OR "FFF" OR "Fused Filament Fabrication" AND "Natural Nanofiber" OR "Natural Nanofibril" OR "Cellulose Nanofiber" OR "Cellulose Nanofibril". The same criteria described were also used to search for patents on the PatentScope, Google Patents and Espacenet platforms.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Applying Concolic Testing to the Automotive Domain

2024-04-09
2024-01-2802
Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. This is achieved through a Satisfiability Modulo Theory (SMT) solver, which operates on symbolic values for program inputs instead of using their concrete counterparts. However, in complex code bases, this approach faces significant limitations, such as program path explosions or unavailable dependencies, which can result in conditions that the SMT solver cannot reason about. Consequently, SMT solvers are often considered as too costly to implement for automotive testing use cases and are rarely employed within this domain. In contrast, fuzz testing has recently gained traction in the automotive industry as an invaluable testing technique for identifying previously unknown vulnerabilities. Its initial setup is straightforward and typically yields useful findings.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

Validation of the PC-Crash Single-Track Vehicle Driver Model for Simulating Motorcycle Motion

2024-04-09
2024-01-2475
This paper validates the single-track vehicle driver model available in PC-Crash simulation software. The model is tested, and its limitations are described. The introduction of this model eliminated prior limitations that PC-Crash had for simulating motorcycle motion. Within PC-Crash, a user-defined path can be established for a motorcycle, and the software will generate motion consistent with the user-defined path (within the limits of friction and stability) and calculate the motorcycle lean (roll) generated by following that path at the prescribed speed, braking, or acceleration levels. In this study, the model was first examined for a simple scenario in which a motorcycle traversed a pre-defined curve at several speeds. This resulted in the conclusion that the single-track driver model in PC-Crash yielded motorcycle lean angles consistent with the standard, simple lean angle formula widely available in the literature.
X