Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate

2024-04-09
2024-01-2085
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL).
Standard

Nickel Wire and Ribbon 99Ni

2024-04-01
CURRENT
AMS5555G
This specification covers a nickel in the form of round wire and rectangular ribbon.
Standard

Motor Vehicle Brake Fluid

2024-03-12
CURRENT
J1703_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Motor Vehicle Brake Fluid Based Upon Glycols, Glycol Ethers, and the Corresponding Borates

2024-03-12
CURRENT
J1704_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycol ethers, and appropriate inhibitors for use in the braking system of any motor vehicle, such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR) or a terpolymer of ethylene, propylene, and a diene (EPDM).
Technical Paper

A Study on the Thermal Interface Mechanisms of Natural Fiber/Fillers and Allotrope-Based Polymers

2024-02-23
2023-01-5129
Composites of polymers reinforced with synthetic/natural fibers are mainly used in engineering sectors such as automobiles, aerospace, and in household appliances due to their abrasion resistance, high toughness, strength, and high specific modulus. The purpose of this research is to provide an overview of fiber-matrix interfaces and interface mechanism that leads to enhanced properties. This article investigates how natural/synthetic fibers, mineral based-materials and additional allotropic materials work rapidly and effectively across interfaces.
Technical Paper

Characteristics Enhancement of Mechanical Properties of Aluminum Metal Matrix Composites Reinforced with Silicon Carbide Using Stir Casting Technique

2024-02-23
2023-01-5164
Metal Matrix Composites (MMC) made of the aluminium as base metal is now being used in diversed applications due to its extended properties. The physical, chemical, mechanical and structural properties make it as irresistible in the engineering applications. Metal Matrix Composites (MMCs) based on aluminium have increased in popular in various applications including aerospace, car, space, transportation, and undersea applications.. In this study, Al LM25/SiCp MMC was fabricated using a low-cost stir casting technique, and the weight percentage of SiCp was varied from 4% to 8% to prepare the MMC plates. The aim of the research was to investigate the mechanical properties of the specimen, including hardness, tensile, and impact tests. The microstructure of the specimens is investigated which shows the bonding between the particles which is fabricated by Stir casting method. The sample 2 has better mechanical properties when it is compared with other specimens.
Technical Paper

A Study on Different Chemical Treatments for Natural Fiber Reinforced Composites

2024-02-23
2023-01-5179
The aim of this study is to examine the effects of chemical treatments on the performance of composites that are reinforced with natural fibres. Natural fibres have several advantages, such as low density, low cost, and environmental friendliness, as they can be biodegraded or recycled. However, natural fibre composites also have some limitations, such as their poor compatibility with the matrix material and the reinforcement material. This leads to weak interfacial bonding and poor mechanical properties. Another problem with natural fibres is that they absorb more moisture than other materials, which can affect their dimensional stability and durability. Therefore, this research compares the compatibility of different chemical treatments that can modify the surface properties of natural fibres and improve their adhesion with the matrix and reinforcement.
Standard

Chemical Compositions of SAE Carbon Steels

2024-02-23
CURRENT
J403_202402
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Technical Paper

Effectiveness of Thermal and Mechanical Properties of Jute Fibers under Different Chemical Treatment for Automotive Interior Trim

2024-01-22
2024-01-5008
In the quest for sustainable materials for automotive interior trim, jute fiber is gaining traction due to its characteristics, which align with other renowned natural fibers. This study aimed to assess the efficacy of sodium bicarbonate as a treatment for jute fibers in comparison to conventional alkaline treatments. Both treated and untreated fibers were examined. Results showed that alkali-processed fibers demonstrated enhanced crystallization, thermal resistance, and surface quality relative to untreated ones. Specifically, alkali-treated jute fibers exhibited a degradation onset at 261.23°C, while those treated with sodium bicarbonate began degrading at 246.32°C. Untreated fibers had a degradation onset at 239.25°C. Although both treatments improved the thermal stability of the fiber, sodium bicarbonate processing, while beneficial, was slightly less effective than the traditional alkaline method.
Technical Paper

A systematic review on smart coatings for automotive applications

2024-01-08
2023-36-0126
Corrosion affects all industrial sectors where metals or metal alloys are used in their structures. In the automotive industry, the continuous search for lightweight parts has increased the demand for effective corrosion protection, in order to improve vehicle performance without compromising durability and safety. In this scenario, coatings are essential elements to preserve and protect vehicle parts from various environmental aggressions. Automotive coatings can be classified into primers, topcoats, clearcoats, and specialty coatings. Primers provide corrosion resistance and promote adhesion between the substrate and topcoat. Topcoats provide color, gloss, and durability to the coating system, while clearcoats enhance the appearance and durability of the finish. Specialty coatings provide additional properties, such as scratch resistance, chemical resistance, and UV protection.
Technical Paper

Potential Application of Rubber-Graphene Compounds in the Automotive Parts

2024-01-08
2023-36-0028
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties.
X