Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Replacing twin electric fan radiator with Single fan radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Occupant Controlled Ventilation

2019-11-21
2019-28-2461
Keywords-Coolant,Ventilation Research and/or Engineering Questions/Objective: Number of Occupants is the major parameter when we consider Air Conditioning System. The number of person who stays in the room may vary in the same way the person who travels in the automobile also vary throughout the distance. This is more prevalent in transportation system like bus, train and where lot of people will travel together and where dropping station in the vehicle is too frequent.In this type,operating A.C has to be varied Methodology: . Instead the number count in the vehicle will be monitored from time to time. Based on the number of count, the cabin has to be cooled or heated and accordingly corresponding power has to be drawn by the compressor from the engine. This human count can be detected based on the number of CO2 sensor located in the cabin. the amount of fresh air that should be added to a cabin can be controlled by a carbon dioxide level transmitter.
Technical Paper

Managment of Manufacturing and Assembly Processes Riscs based on Modified FMEA

2019-09-16
2019-01-1870
The quality of production is defined by the actual deviations from the requirements stated in design and technological documentation including drawings. In this article the problem of ensuring steady decrease in quantity of deviations from these requirements by production is considered. Carrying out preventive actions, in combination with control of time and costs of correction of discrepancies of such decrease it is possible to achieve. For the solution of an objective the method of the modified FMEA using parameters and levels of ranging as elements of operation of technological process where at a design stage of a product are set structure, is offered and are adjusted on the basis of feedback of production and operation. Such statement of a problem demands automation of collecting and data processing which can be used for creation of the knowledge base necessary for management of productions.
Technical Paper

Simulation of Aircraft Assembly via ASRP Software

2019-09-16
2019-01-1887
ASRP (Assembly Simulation of Riveting Process) software is a special tool for modelling assembly process for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the airframe assembly process certain criteria on the residual gap between parts must be fulfilled. The numerical approach realized in ASRP allows one to evaluate the quality of contact on every stage of the assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps and identification of hazardous areas in junction regions.
Technical Paper

How to Improve SI Engine Performances by means of Supercritical Water Injection

2019-09-15
2019-24-0235
The efficiency of ICEs is strongly affected by the heat losses of exhaust gases and engine cooling system, which account for about 60% of the heat released by combustion. Several technologies were developed to recover waste heat in ICEs, from turbochargers to ORCs, Stirling cycles and piezoelectric generation. A promising approach is to transfer the waste heat to a fluid, like water, and inject it into the combustion chamber. In such a way, the recovered energy is partially converted into mechanical work, by improving both engine efficiency and performance. In this work, the engine benefits obtained by using supercritical water as the vector to recover heat losses are analysed. Water has been chosen since it has a relatively high heat capacity and can be extracted directly from exhaust gases. A quasi-dimensional model has been implemented to simulate the ICE work cycle. Specifically, in this paper a spark ignition ICE, four-stroke with port fuel injection (PFI) has been considered.
Technical Paper

A coupled lattice Boltzmann-Finite Volume Method for the thermal transient analysis of an air cooled Li-ion battery module for electric vehicles with porous media insert modeled at REV scales

2019-09-15
2019-24-0242
Lithium ion batteries are the most promising candidates for electric and hybrid electric vehicles, owe to their ability to store higher electrical energy. As a matter of fact, in automotive applications, these batteries undergo frequent and fast charge and discharge processes, which are associated to internal heat generation, which in turns causes temperature increase. Thermal management is therefore crucial to keep temperature in an appropriate level for safe operation and battery wear prevention. In a recent work authors have already demonstrated the capabilities of a coupled lattice Boltzmann-Finite Volume Method to deal with thermal transient of a three dimensional air-cooled Li-ion battery at different discharging rates and Reynolds numbers. Here, in order to improve discharge thermal capabilities and reduce temperature levels of the battery itself, a layer of porous medium is placed in contact with the battery so to replace a continuum solid aluminum layer.
Technical Paper

Knock Mitigation by Means of Coolant Control

2019-09-09
2019-24-0183
The potentiality of knock mitigation by means of the control of the coolant flow rate is investigated. As a first step, the dynamic behavior of the wall temperature in response to a sudden variation of the coolant flow rate is analyzed experimentally in a small displacement, 4-valve per cylinder SI engine, which is equipped with an electrically driven pump. Subsequently, the influence of the wall temperature on knock onset is analyzed through a zero-dimensional model and the Livengood and Wu integral. Finally, an experimental activity on the engine test bed is carried-out in order to evaluate the influence of the coolant flow rate and of the engine inlet coolant temperature on the knock phenomenon. Results show that, even though a retarded spark advance and a mixture enrichment are not avoidable in the early stage of knock onset, a cooling control can help reducing the time of use of these fuel consuming strategies in the case of prolonged high-load conditions.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of test benches within the framework of research and development projects directly correlates with the "health" of the examinee to be investigated. The use of so-called Early Damage Detection Systems (EDDS) is becoming increasingly popular for reasons of Unit Under Test (UUT) monitoring. In the context of this publication the expectations of an EDDS and its structure are discussed as well as its advantages and disadvantages in test bench operation analyzed and compared with the results of measurements. The used EDDS should primarily prevent the damage, up to the loss of the test object by a total loss, in order to ensure a finding possibility of the damaged part at the examined test object. A deviation of the test object behavior from the undamaged condition must be recognized in an early status and must lead to a shutdown of the test bench operation after reaching a defined limit value.
Technical Paper

CFD Modeling of Compact Heat Exchangers for I.C. Engine Oil Cooling

2019-09-09
2019-24-0179
In the last years, the increase of the specific power of the modern engines has required a parallel improvement of the performances of the cooling system. In this context, also the control of the oil temperature has become an important issue, leading to the introduction of dedicated cooling circuits (air-cooled or liquid-cooled). Among the two, the liquid-cooled solution results in a more compact installation in which the oil-to-liquid heat exchanger is directly mounted on the engine block and integrated in the engine cooling system. It is clear that, in a liquid-cooled solution, the design of the heat exchanger represents an issue of extreme concern, which requires a compromise between different objectives: high compactness, low pressure drop, high heat-transfer efficiency. In this work, a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins as heat transfer enhancer (turbolator), has been developed.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to simultaneously meet fuel economy, emissions and performance targets. The response time variations between a given set of engine control actuators tends to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) algorithms have the potential to significantly reduce calibration and control tuning efforts as compared to current methodologies that are designed around integration of multiple single-input single-output sub-system controllers. MPC systems simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control the engine model and optimization processes must be computationally efficient without sacrificing effectiveness.
Technical Paper

Validity of a Steady-State Friction Model for Determining CO2 Emissions in Transient Driving Cycles

2019-09-09
2019-24-0054
Due to its high benefit-cost ratio, decreasing mechanical friction losses in internal combustion engines represents one of the most effective and widely applicable solutions for improved engine efficiency. Especially the piston group – consisting of piston, rings and pin – shows significant potential for friction reduction, which can be evaluated through extensive experimental parameter studies. For each investigated variant, the steady-state friction measurements are fitted to an empirical polynomial model. In order to calculate the associated fuel consumption and CO2 emissions in transient driving cycles, the steady-state friction model is used in a map-based vehicle simulation. If transient engine operation entails friction phenomena that are not included in the steady-state model, the simulation could yield erroneous fuel consumption and CO2 predictions.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro IV Heavy-Duty Diesel Engine with High EGR-Rates, an In-cylinder Peak Pressure of 250 bar and an Injection Pressure up to 2500 bar

2019-09-09
2019-24-0171
A raise of efficiency is, especially for CV, the strongest selling point concerning the TCO. Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. The losses resulting from taking real gas properties and non-ideal combustion into account have only a limited potential for gains, wall heat losses are currently believed to have the highest optimization potential. Critical for the occurrence of these losses is the wall heat transfer, which can be described by coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is needed to determine the WHT relations at the combustion chamber of an engine. Methods to reduce the WHT can be developed and their effectiveness can be evaluated.
Technical Paper

Hybrid Powertrain Technology Assessment Through an Integrated Simulation Approach

2019-09-09
2019-24-0198
Global automotive fuel economy and emissions pressures mean that 48V hybridisation will become a significant presence in the passenger car market. The complexity of the powertrain solutions is increasing in order to further increase fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. This paper presents the results from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module (a coolant valve replacing a conventional thermostat).
Standard

Ride Index Structure and Development Methodology

2019-07-18
WIP
J2834
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver.
Standard

Inspection of Ground, Chromium, Plated Steel Parts

2019-07-18
CURRENT
AMS2440C
This specification covers the requirements for inspection of ground chromium plated surfaces for grinder-induced damage to the chromium plate and substructure. The specification also provides users with criteria for distinguishing between such damage and acceptable indications inherent to the chromium plate.
X