Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-10-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction of up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Technical Paper

CFD Simulation Methodology for a Rotary Steam Expansion Piston Engine

2020-10-30
2020-32-2303
In industrial processes, combustion engines and co-generation plants, large amounts of waste heat are generated, which are often lost to the environment. The conversion of this thermal energy into mechanical work and ultimately into electrical power promises a significant improvement in energy utilization, the efficiency of the overall system and, consequently, cost-effectiveness. Therefore, the use of a Rankine Cycle is a well-established technical process. A recent research project investigates a novel expansion machine to be integrated into an RC-process to convert the heat energy into mechanical work. Primarily, the present work deals with the fluid dynamic simulation of this expander, which is based on the principle of a rotary piston engine. The aim is to develop, analyze and optimize the process and the corresponding components. Hence, a CFD model has to be built up, which should correspond as closely as possible to the requirements and geometries of the physical engine.
Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Improvement of Quasi-Steady State Heat Transfer Model for Intake System of IC Engines with Considering Backflow Gas Effect Using 1-D Engine Simulation

2020-10-30
2020-32-2315
For improving the thermal efficiency and the reduction of hazardous gas emission from IC engines, it is crucial to model the heat transfer phenomenon starting from the intake system and predict the intake air’s mass and temperature as precise as possible. Previously the authors developed an empirical equation based on an experimental setup of an intake port model of an ICE in order to be implemented into the engine control unit and numerical simulation software for heat transfer calculations. The authors developed an empirical equation based on the conventional Colburn analogy with the addition of Graetz and Strouhal numbers. Introduced dimensionless numbers were used to characterize the entrance region, and intermittent flow effects, respectively.
Training / Education

Model-Based Systems Engineering (MBSE)

2020-10-16
As the complexity of products increases, traditional text-based systems engineering can no longer meet the needs. To solve the problem, Model-based Systems Engineering offers a unified communication platform among relevant staff by carrying out diagram-based unambiguous description, analysis and design for the demand, structure and behavior of complex systems in the form of a model. It, however, still remains a challenge to implement MBSE modeling and model-driven technology and application as well as its integration with the industry.
Technical Paper

Determination of Diffusion Capability of Oxygen Through Brake Pads From the Surface Towards the Interior

2020-10-05
2020-01-1616
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the brake pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. In previous work from RIMSA, it was observed that iron sulphide had been reacted below the surface of the brake pad, suggesting that tribochemistry does not only take place on the surface. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a peculiar microstructure (rough microstructure) when it becomes oxide that can be recognized easily, making it a good marker.
X