Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Technical Paper

Modeling of Equivalent Geometric Imperfection for Buckling Prediction of Oblate Ellipsoidal Shells

2024-06-01
2024-26-0412
Oblate ellipsoidal shells subjected to external pressure exhibit catastrophic buckling which is highly sensitive to geometric imperfections. It is not feasible to posses the Measured Geometric Imperfections (MGI) apriori, at the design stage. Therefore, different imperfection modeling techniques are explored to assess the imperfection sensitivity of oblate ellipsoidal shells under external pressure. The eigen mode imperfection is a very popular approach to model the geometric imperfections, which have been attempted for the ellipsoidal shell. Knock down factor variation for various scaling factors of the eigen mode imperfection is plotted. Dimple based approaches are attempted to assess the imperfection sensitivity of the ellipsoidal shell as the imperfection can be compared with a localized dimple triggering local buckling of the shell.
Technical Paper

Stability of Hypersonic Boundary Layers on Flat Plates with Sharp and Blunt Leading Edges

2024-06-01
2024-26-0457
This research employs a comprehensive methodology to explore hypersonic boundary layers' stability and transition dynamics, focusing specifically on the influence of sharp and blunt leading edges. The Stanford University Unstructured (SU2) Computational Fluid Dynamics (CFD) solver is utilized to compute the mean flow over a flat plate, establishing a foundational basis for subsequent stability analysis. The extracted boundary layer profiles undergo validation against existing literature, ensuring accuracy and reliability. Further analysis is conducted using a Python code to generate input files for the Linear Stability Solver. The Linear Stability Solver analysis constitutes a crucial phase wherein the research delves into the eigenvalue spectra, identifying dominant modes and closely scrutinizing the role of the modes in the transition process within the hypersonic boundary layers.
Technical Paper

A Comparative Study of RANS and Machine Learning Techniques for Aerodynamic Analysis of Airfoils

2024-06-01
2024-26-0460
It is important to accurately predict the aerodynamic properties for designing applications which involves fluid flows, particularly in the aerospace industry. Traditionally, this is done through complex numerical simulations, which are computationally expensive, resource-intensive and time-consuming, making them less than ideal for iterative design processes and rapid prototyping. Machine learning, powered by vast datasets and advanced algorithms, offers an innovative approach to predict airfoil characteristics with remarkable accuracy, speed, and cost-effectiveness. Machine learning techniques have been applied to fluid dynamics and have shown promising results. In this study, machine learning model called the back-propagation neural network (BPNN) is used to predict key aerodynamic coefficients of lift and drag for airfoils.
Technical Paper

Fast Coupled Load Analysis through Reanalysis Technique: Formulation and Demonstration on Sample Problems

2024-06-01
2024-26-0459
In a typical Launch Vehicle (LV), dynamic responses due to various flight events are estimated through Coupled Load Analysis (CLA) where the launch vehicle is coupled with a spacecraft. A launch vehicle is subjected to various loads during its flight due to engine thrust depletion / shut-off, thrust oscillation, wind and gust, maneuvering loads. In aerospace industry a standard CLA is performed by generating the mathematical model of launch vehicle and coupling it with reduced mathematical model of satellite and applying the boundary conditions. A CLA is a time consuming process as several flight instances and load cases need to be considered along with generation of structural dynamic model at each time instants. For every new mission, the satellites are mission specific whereas the launch vehicle and the loads remain unchanged. To take advantage of this fact, a new method called “Fast CLA through Reanalysis technique” is proposed in the present paper.
Technical Paper

A Multi-Scale Computational Scheme for Prediction of High-Cycle Fatigue Damage in Metal Alloy Components

2024-06-01
2024-26-0430
Aerospace structural components grapple with the pressing issue of high-cycle fatigue-induced micro-crack initiation, especially in high-performance alloys like Titanium and super alloys. These materials find critical use in aero-engine components, facing a challenging combination of thermo-mechanical loads and vibrations that lead to gradual dislocations and plastic strain accumulation around stress-concentrated areas. The consequential vibration or overload instances can trigger minor cracks from these plastic zones, often expanding unpredictably before detection during subsequent inspections, posing substantial risks. Effectively addressing this challenge demands the capability to anticipate the consequences of operational life and aging on these components. It necessitates assessing the likelihood of crack initiation due to observed in-flight vibration or overload events.
Technical Paper

High Payload Fraction UAV Design and Performance Evaluation

2024-06-01
2024-26-0442
Unmanned Aerial Vehicles (UAVs), or drones, are aerial platforms with diverse applications. Their design is shaped by specific constraints, driving a multidisciplinary, iterative process encompassing aerodynamics, structures, flight mechanics and other domains. This paper describes the design of a fixed-wing UAV tailored to competition requirements. The payload comprises golf balls with specific weight and dimensions. The requirements included maintaining a thrust-to-empty weight ratio below 1 and achieving a high payload fraction, calculated as the ratio of payload weight to total UAV weight. An optimization approach was introduced, altering the conventional UAV sizing process to enhance the payload fraction. This was achieved by adjusting the design points within the solution space derived from constraint analysis.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

CFD Analysis of Cavitation in a Flow through GERotor Pump

2024-06-01
2024-26-0449
A gerotor pump is a positive displacement pump consisting of inner and outer rotors, with axis of inner rotor offset from axis of outer rotor. Both rotors rotate about their respective axes. The volume between the rotors changes dynamically, due to which suction and compression occurs. A gerotor pump may be subject to erosion due to cavitation. This paper details about the CFD methodology that has been used to capture cavitation bubbles which might form during the operation of gerotor pump. A full scale (3D) transient CFD model for gerotor pump has been developed using commercial CFD code ANSYS FLUENT. The most challenging part of this CFD flow modeling is to create a dynamic volume mesh that perfectly represents the dynamically changing rotor fluid volume of the gerotor pump. Two different approaches have been used to model this dynamic mesh analysis in the Ansys Fluent tool - one method by using the traditional UDF script and, another method by using Python automation script.
Technical Paper

Using Generative Models to Synthesize Multi-Component Asset Images for Training Defect Inspection Models

2024-06-01
2024-26-0474
Industries have been increasingly adopting AI based computer vision models for automated asset defect inspection. A challenging aspect within this domain is the inspection of composite assets consisting of multiple components, each of which is an object of interest for inspection, with its own structural variations, defect types and signatures. Training vision models for such an inspection process involves numerous challenges around data acquisition such as insufficient volume, inconsistent positioning, poor quality and imbalance owing to inadequate image samples of infrequently occurring defects. Approaches to augmenting the dataset through Standard Data Augmentation (SDA) methods (image transformations such as flipping, rotation, contrast adjustment, etc.) have had limited success. When dealing with images of such composite assets, it is challenging to correct the data imbalance at the component level using image transformations as they apply to all the components within an image.
Technical Paper

Aero-Engine Fastened Structural Components: An Investigation into Impact Induced Three-Dimensional Dynamic Fracture Mechanism

2024-06-01
2024-26-0414
Fastener joints play a critical role within aircraft engine structures by connecting vital structural members and withstanding various load scenarios, including impact occurrences like foreign object damage (FOD) on engine nacelles. The precise modeling and simulation of fastener joint behavior under dynamic loads are pivotal to ensuring their structural integrity and functionality. Simulation is essential for minimizing costly experiments in evaluating the challenging design aspect of containing FOD. Prior investigations on fastener joints have predominantly focused on quasi-static or in-plane dynamic loads. This study introduces a comprehensive methodology to simulate the impact dynamics of fastener joints, accommodating both in-plane and out-of-plane loads. The approach employs a fully self-consistent 3D viscoplastic finite element formulation-based simulation using a newly developed code.
Technical Paper

On the Aero-Thermo-Structural Performance of Rectangular and Axisymmetric Scramjet Configurations

2024-06-01
2024-26-0441
Scramjet-based hypersonic airbreathers are needed for next-generation defense and space applications. Two scramjet configurations, namely, rectangular and axisymmetric, are primarily studied in the literature. But, there is no quantitative comparison of the performance metrics between these two scramjet configurations. This study investigates the aero-thermo-structural performance of rectangular and axisymmetric scramjet engines at Mach 7 and 25 km altitude. A numerical framework involving computational fluid dynamics (CFD) and computation structural dynamics (CSD) is established. The aero-thermo-structural loads on the scramjet flow path are estimated using Reynolds-averaged Navier-Stokes simulation. A finite element-based coupled thermo-structural analysis is performed to understand the thermo-structural response. Before using the numerical models for the study, CFD and CSD modules are validated with literature data.
Technical Paper

Numerical Investigation of the Aerodynamic Characteristics of a Missile Geometry at Mach 4

2024-06-01
2024-26-0443
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL) , coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometry, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption.
Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Dynamic Ascent Loads Estimation of Winged Reusable Launch Vehicle: Formulation, Analysis and Post Flight Studies

2024-06-01
2024-26-0452
A structural load estimating methodology was developed for the RLV-TD HEX-01 mission, the maiden winged body technology demonstrator vehicle of ISRO. The technique characterizes atmospheric regime of flight from vehicle loads perspective and ensures adequate structural margin considering atmospheric variations and system level perturbations. Primarily the method evaluates time history of station loads considering effects of vehicle dynamics and structural flexibility. Station loads in the primary structure are determined by superposition of quasi-static aerodynamic loads, dynamic inertia loads, control surface loads and propulsion system loads based on actual physics of the system. Spatial aerodynamic distributions at various Mach numbers along the trajectory have been used in the study. Argumentation in aerodynamic loads due to vehicle flexibility is assessed through the use of spatial aerodynamic distributions.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Analysis for Effect of Angle of Attack on Coefficient of Lift of Wing Structure

2024-06-01
2024-26-0450
Dimensional optimization has always been a time consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. In this study CFD analysis is performed to obtain pressure counter of wings. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the C L /C D ratio.
Technical Paper

CFD Methodology Development to Predict Lubrication Effectiveness in Electromechanical Actuators

2024-06-01
2024-26-0466
Electromechanical actuators (EMAs) play a crucial role in aircraft electrification, offering advantages in terms of aircraft-level weight, rigging and reliability compared to hydraulic actuators. To prevent backdriving, skewed roller braking devices called "no-backs" are employed to provide braking torque. These technology components are continuing to be improved with analysis driven design innovations eg. U.S. Pat. No. 8,393,568. The no-back mechanism has the rollers skewed around their own transverse axis that allow for a combination of rolling and sliding against the stator surfaces. This friction provides the necessary braking torque that prevents the backdriving. By controlling the friction radius and analyzing the Hertzian contact stresses, the brake can be sized for the desired duty cycle. No-backs can be configured to provide braking torque for both tensile and compressive backdriving loads.
X