Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

Optimal and Prototype Dimensioning of Electrified Drives for Automated Driving

2024-07-02
2024-01-3021
Electrified drives will change significantly in the wake of the further introduction of automated driving functions. Precise drive dimensioning, taking automated driving into account, opens up further potential in terms of drive operation and efficiency as well as optimal component design. Central element for unlocking the dimensioning potentials is the knowledge about the driving functions and their application. In this paper the implications of automated driving on the drive and component design are discussed. A process and a virtual toolchain for electric drive development from concept optimization to detailed component dimensioning is presented. The process is subdivided into a concept optimization part for finding the optimal drive topology and layout and a detailed prototype dimensioning process, where the final detailed drive dimensioning is carried out.
Technical Paper

What is going on around the Automotive PowerNet - An overview of state-of-the-art PowerNet, insights into the new trends, and a simulation solution to keep pace with architectural changes.

2024-07-02
2024-01-2985
The automotive PowerNet is facing a major transformation. The three main drivers are: • Increasing power • Availability requirements • PowerNet complexity and cost reduction These driving factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is among others caused by the progressive electrification of formerly mechanical components and the trend of increasing number of comfort loads. This leads to a steady increase in installed electrical power. X-by-wire systems and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet System, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the costliest parts of modern cars. These challenges are met with different concepts.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

Evaluation and simulation of wheel steering functionality on a Road to Rig test bench

2024-07-02
2024-01-3000
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventive identify potential issues. This paper proposes an advancement test approach in the area of the overall vehicle system included steering system and power train on a “Road to Rig” test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles.
Technical Paper

Challenges of measuring low levels of CO2 and NOx on H2-ICE

2024-07-02
2024-01-2998
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise.
Technical Paper

Enhancing BEV Energy Management: Neural Network-Based System Identification for Thermal Control Strategies

2024-07-02
2024-01-3005
Modeling thermal systems in Battery Electric Vehicles (BEVs) is crucial for enhancing energy efficiency through predictive control strategies, thereby extending vehicle range. A major obstacle in this modeling is the often limited availability of detailed system information. This research introduces a methodology using neural networks for system identification, a powerful technique capable of approximating the physical behavior of thermal systems with minimal data requirements. By employing black-box models, this approach supports the creation of optimization-based operational strategies, such as Model Predictive Control (MPC) and Reinforcement Learning-based Control (RL). The system identification process is executed using MATLAB Simulink, with virtual training data produced by validated Simulink models to establish the method's feasibility. The neural networks utilized for system identification are implemented in MATLAB code.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Simulation of Hydrogen Combustion in Spark Ignition Engines Using a Modified Wiebe Model

2024-07-02
2024-01-3016
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe's formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Numerical Investigation of the Effect of Piston Geometry on the Performance of a Ducted Fuel Injection Engine

2024-07-02
2024-01-3024
Ducted Fuel Injection (DFI) engines have emerged as a promising technology in the pursuit of a clean and efficient combustion process. This article aims at elucidating the effect of piston geometry on the engine performance and emissions of a metal DFI engine. Three different types of pistons were investigated and the main piston design features including the piston bowl diameter, piston bowl slope angle, duct angle and the injection nozzle position were examined. To achieve the target, computational fluid dynamics (CFD) simulations were conducted coupled to a reduced chemical kinetics mechanism. Extensive validations were performed against the measured data from a conventional diesel engine. To calibrate the soot model, genetic algorithm and machine learning methods were utilized. The simulation results highlight the pivotal role played by piston bowl diameter and fuel injection angle in controlling soot emissions of a DFI engine.
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Neural Network Modeling of Black Box Controls for Calibration of Internal Combustion Engines

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, these engines feature an increasing number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
X