Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Vibration Analysis Using Finite Element Analysis (FEA)

2019-12-02
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
Training / Education

Hybrid and Electric Vehicle Engineering Academy

2019-12-02
SAE Engineering Academies provide comprehensive and immersive training experiences, helping new and re-assigned engineers become proficient and productive in a short period of time. The Hybrid and Electric Vehicle Engineering Academy covers hybrid and electric vehicle engineering concepts, theory, and applications relevant to HEV, PHEV, EREV, and BEV for the passenger car industry. While the theory and concepts readily apply to the commercial vehicle industry as well, the examples and applications used will apply primarily to the passenger car industry.
Technical Paper

A novel approach on range prediction of a hydrogen fuel cell electric truck

2019-11-21
2019-28-2514
A novel approach on range prediction of a hydrogen fuel cell electric truck C.Venkatesh - Manager - Product Development, Sustainable Mobility & Advanced Technologies Abstract: A novel approach on range prediction of a hydrogen fuel cell electric vehicle Abstract: Today's growing commercial vehicle population creates a demand for fossil fuel surplus requirement and develops highly polluted urban cities in the world. Hence addressing both factors are very much essential. Battery electric vehicles are with limited vehicle range and higher charging time. So it is not suitable for the long-haul application. Hence the hydrogen fuel cell based electric vehicles are the future of the commercial electric vehicle to achieve long range, zero emission and alternate for reducing fossil fuels requirement. The hydrogen fuel-cell electric vehicle range, it means the total distance covered by the vehicle in a single filling of hydrogen into the onboard cylinders.
Technical Paper

Snowmobii 2.0 (Snow mobility Unmanned Vehicle)

2019-11-21
2019-28-2516
In this paper we propose the snow mobility vehicle in order increase the mobility and decrease the risk of accidents for carry food and medicines on snow bounded areas using unmanned tracked vehicle called as snowmobii 2.0. Our unmanned tracked vehicle can transport Food/medicines as well as Defence in snow bounded areas. This unmanned robot can run in loose as well as hard snow due to it have specific featured technology in base wheel(track wheel system) such as hub with outer seals that improve its durability. The proposed snow mobility vehicle is consist of many sophisticated-designed systems such as navigation system, obstacle detection system, communication system, temperature sensing system. Snowmobii 2.0 is easy to get command and enable significant reduction in losses of many solder’s precious lives due to unavailability of food and medicines at that place.
Technical Paper

Computer Vision and Monocular Camera System for Cost Efficient Autonomous Vehicle

2019-11-21
2019-28-2518
The positioning of the sensors on vehicle will play a critical role in autonomous cars, it improves the performance of overall system by all the means and make it cost effective by reducing a total system cost. This paper contributes in deciding the best position of camera location on the vehicle with complete geometric and system calculation based on the maximum speed of vehicle, hardware processing speed, camera parameters, actuation and control time, Blind spot detections, maximum Height of objects, etc. The paper presents the technologies and datasets used for lane lines and other object detections. It focusses on newly proposed technique and its calculations to decide the best location of monocular camera sensor on the vehicle by considering all other parameters of autonomous vehicle system. It enhances the performance of overall system as well as reduces the system cost which takes us closer to the futuristic dream of efficient and low-cost autonomous vehicle.
Technical Paper

Machine Learning considerations in the context of Automotive Functional Safety Requirements for Autonomous Vehicles

2019-11-21
2019-28-2519
We are currently in the age of developing Autonomous Vehicles (AV). Never before in history, the environment has been as conducive as today for these developments to come together to deliver a mass produced autonomous car for use by general public on the roads. Several enhancements in hardware, software, standards and even business models are paving the way for rapid development of AVs, bringing them closer to production reality. Safety is an indispensable consideration when it comes to transportation products, and ground vehicle development is no different. We have several established standards. When it comes to Autonomous Vehicle development, an important consideration is ISO 26262 for, Automotive Functional Safety. Going from generic frameworks such as Failure Mode and Effects Analyses (FMEA) and Hazard and operability study (HAZOP) to Functional Safety, Safety of Intended Functionality, and Automotive Safety Integrity Levels specific is a natural progression.
Technical Paper

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

2019-11-21
2019-28-2523
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status.
Technical Paper

THE NEED OF PERSONALIZATION AND OPPORTUNITIES IN AUTONOMOUS VEHICELS AND SHARED MOBILITY

2019-11-21
2019-28-2520
Shared mobility and Autonomous shared mobility take major share in Mobility 4.0. Personalization in a shared mobility will play a significant role in customer engagement in Autonomous world. In case of personal vehicle each customer will have their own personal settings in their own vehicle; in case of Autonomous shared mobility or shared mobility, we can satisfy individual customer need only by personalizing the vehicle for each individual user needs. This will give a cognitive feel of personal vehicle in a shared environment. We need technologies in improving vehicle interior and exterior systems and design to address personalization. We will be discussing on feasible opportunities of personalization and with illustrations in Vehicle Interior Cabin Space, Seat comfort, Compartments, Vehicle interior & Exterior Access / Controls.
Technical Paper

Autonomous Car in India

2019-11-21
2019-28-2522
Automation is expanding in every possible direction and it was only time before it reached the Automobile sector. There has been tremendous traction towards autonomous cars since last 2-3 yrs as a probable solution to reduce accidents and promote safe and comfortable commute. Many companies have expressed their interest in developing some part(s) of it and when would all of this culminate resulting in a fully autonomous car. But as every coin has two aspects so same does automation. This paper covers the future of autonomous cars from Indian perspective, covering possible challenges, complex use cases, advantages, technology enablers, economy outlook etc. India has the dubious honor of ranking first in road deaths in the world at present & accounts for 10 percent of global road accidents with more than 1.46 lakh fatalities annually.
Technical Paper

A DIGITALIZED VALIDATION APPROACH FOR REAL TIME AND REMOTE MONITORING OF AN OFF HIGHWAY VEHICLE PERFORMANCE

2019-11-21
2019-28-2531
A DIGITALIZED VALIDATION APPROACH FOR REAL TIME AND REMOTE MONITORING OF AN OFF-HIGHWAY VEHICLE PERFORMANCE V.Jagannathan 1.a* , B.Jaiganesh 2.b & S.Sudarsanam 3.c Mahindra & Mahindra Limited, Mahindra Research Valley, Mahindra World City, Anjur PO, TN, India Corresponding author Email- V.JAGANNATHAN@mahindra.com Validation of agricultural tractors is necessary to ensure that these machines perform to their expected potential and are aptly matched with implements. Testing these machineries in real-time while performing activities in the field allows a bigger picture to be seen; the performance data incorporates the effects of many external factors (Soil, Climate etc.). Tractor Performance data apprehending is the vital part of validation. Data acquisition of key performance parameters during field validation in different application/different countries is of utmost importance.
Technical Paper

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
Technical Paper

Enhancement of safety features of steering wheel using experimentally validated finite element model

2019-11-21
2019-28-2556
Automotive safety is the primary concern in the current world. In order to develop safe and crashworthy vehicles, phenomena behind the energy absorption characteristics of every automotive component must be known. Steering wheel is one of the key players which could cause severe injuries to the driver if sufficient safety measures are not considered. This research focuses on the crash performance of commercial vehicle steering as per head form and body block test prescribed in ECE R12. Detailed FE (Finite Element) model of the steering wheel including armature, horn pad was developed using nonlinear material properties. The model was first validated using the test results. Comparisons between experimental results and finite element analysis results were conducted and correlated using load versus displacement profiles over the duration of impact. A good relationship between test and FE results was found which allows for investigation into the energy analysis of the steering components.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Determining the State Of Health [SOH] of Li Ion cell

2019-11-21
2019-28-2579
“NuGen Mobility Summit-2019” Paper Title : Determining the State Of Health [SOH] of Li Ion cell Authors: Sushant Mutagekar, Ashok Jhunjhunwala, Prabhjot Kaur Objective Cells age with life. This aging is dependant on various factors like charging/discharging rates, DOD of operation and operating temperature. As the cell ages it undergoes power fade (ability to deliver required power at particular State of Charge [SOC]) and capacity fade (the charge storage capacity of cell). In an Electric Vehicle it is important to know what power shall be demanded from a battery irrespective of what its current SOC is and number of cycles it has undergone. With minimal accuracy and less computational power, it is difficult for a Battery Management System [BMS] to accurately determine SOH; the paper proposes a a precise model that may help.
X