Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way.
Technical Paper

A review on influence of different flushing methods on Material Removal Rate using EDM.

2019-11-21
2019-28-2543
Electrical release machining (EDM), is a material removal procedure whereby a coveted shape is acquired by utilizing electrical releases (sparks). Material is expelled from the work piece by a progression of quickly repeating current releases between cathode and anode, isolated by a dielectric fluid and subject to an electric voltage. At the point when the voltage between the two terminals is expanded, the power of the electric field in the volume between the anodes winds up more prominent than the quality of the dielectric (in any event in a few spots), which separates, enabling current to stream between the two cathodes. This wonder is the equivalent as the breakdown of a capacitor (condenser). Accordingly, material is expelled from the cathodes.
Technical Paper

Design of Additive Manufactured Thermoplastic Component as FMVSS 201U Countermeasure

2019-11-21
2019-28-2547
Research and/or Engineering Questing/Objectives: Safety of the occupant in passenger cars is one of the regulatory requirements in many developed countries. This includes upper interior head impact load case of the unbelted occupant during crash (FMVSS 201U) as one of them. During a crash event the occupant head can collide with the interior parts of the vehicle, such as a headliner, pillar trim and other subsequent components in the loading direction. Injury on the head is quantified in terms of the Head Injury Criterion of a crash test dummy (HIC(d)) value which should be less than 1000 per standard. Several ways can be adopted to reduce the HIC(d) value. These include a change in the design of ribs in the safety plastic components, headliner profile change, use of countermeasure foam between headliner and the exterior sheet metal parts, or a combination of any of these to absorb the energy of impact.
Technical Paper

ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES

2019-11-21
2019-28-2568
ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES Ramesh Kavalur1, Raghavendra Rao 1 1 Body in White, Manufacturing Engineering, General Motors Technical Centre India Pvt. Ltd, India, Keywords - Additive manufacturing, assembly aid gauges, 3D printer. Research Objective - Automotive manufacturing impressively implementing 3D printed jigs and fixtures. Traditional manufacturing of metal assembly aid gauges have limitations such as lead time and causes dent and rough marks on the outer panel of the body. On the other hand, 3D printed jigs and fixtures, demands more time (depends on complexity), have low level of precision and they offer lower strength. It is observed that this occurs because of the inefficient design and manufacturing without understanding the functionality and capability of the 3D printer.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Steering and Handling Performance Optimization Through Correlation of Objective - Subjective Parameters and Multi-body Dynamics Simulation

2019-11-21
2019-28-2412
RESEARCH OBJECTIVE: Automobile Industry has driven through the ages with continuous development with innovative technologies and frugal engineering. Expectation of customer is also increasing through the generations. To meet the customer demand for performance and be best in market, OEM needs to deliver best performance of vehicle with cost effective and short development process. Steering and Handling of vehicle is one of major customer touchpoints and needs to be tuned to achieve various conflicting requirements. The objective of this research is to optimize the steering and handling using correlation between three major methods of evaluation. METHODOLOGY: Methodology for optimization of steering and handling performance using correlation between subjective evaluation, objective measurement and multi-body-dynamic simulation is presented.
Technical Paper

Affect of Tyre inflation on Rolling Resistance of Tyre

2019-11-21
2019-28-2415
Rolling resistance refers to the various forms of resistance against driving force when the vehicle is in motion. Several factors contribute to rolling resistance, including wind drag on the car, acceleration resistance generated by inertia force when speeding up, and resistance on the tyres. Tyre inflation pressure plays vital role on Coefficient of Rolling Resistance (RRC) of Tyre consequently vehicle mileage. Low or High tyre pressure is not good for driving comfort, safety of vehicle well as for environment. Petroleum Conservation Research Association ( PCRA ) has taken good initiative in direction to Tyre Star marking based on RRC values of Tyre.
Technical Paper

Paper Title : Connectivity in 2wheeler: Opportunities & Challenges

2019-11-21
2019-28-2437
Abstract: Future of Mobility is mainly driven by 3 main pillar viz Connected , Electrified and Automated Driving. With advancement in Communication Technology supplemented by huge customer Base , Connectivity has proven to deliver better Services to the End-user. The next step in this journey would be to connect the so called “Things” and the Things that we want to connect is the 2 wheeler in the Mobility domain This paradigm shift in the Mobility Landscape is expected to bring plethora of opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment , and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership Methodology: Analysis of OEM and Supplier strategies/approaches and upcoming trends in connectivity and electrification.
Technical Paper

SmartPlay Studio-A Connected Infotainment Development

2019-11-21
2019-28-2440
Infotainment has been always an important aspect of life which has made its way to car design. The cars today are much more advanced compared to their predecessors. The in-vehicle infotainment advancements have followed the consumer electronics market in terms of technologies such as Touchscreen, App based Navigation, Voice Assistant and other multimedia services. This trend is going to expand further as smartphones have revolutionized the infotainment domain with awareness and accessibility to customers. The infotainment system in the cars are expected to be connected not only to the cloud but various vehicle controllers to display host of information & controls at customer`s fingertips. To design a system that supports connectivity to both cloud and vehicle is challenging in terms of cost and design for the OEMs. With focus on Indian market condition and global trends, this paper analyzes the customer expectation for Connected Infotainment system.
Technical Paper

Realtime Tuning and optimization of EV traction motors with controllers on E-motor testbench

2019-11-21
2019-28-2478
The need for dedicated development of indigenous electric power-train is becoming much essential in the recent times with upcoming trends and policies. Hence, The validation and optimization of the newly developed electric power-train becomes much crucial in order to ensure smooth real world operation. This can be only possible in E-motor test benches with dedicated equipment for thorough evaluation. Also, there are no practical limitations to check the peak characteristics in a controlled laboratory environment. Initially, the motor is setup by mechanically coupling with the dynamo-meter and the controller in the open loop method with constant parameters to check steady state operability without load or external parameters that affect the torque production and speed of the drive. Then progresses to closed loop method incorporating the feedback control and external parameters including torque loading at the shaft from the dynamo-meter.
Technical Paper

Optimization of An EV Controller Design For A Three Wheeler BOVs - EMC Approach

2019-11-21
2019-28-2474
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. Three wheeler Battery Operated Vehicles (BoVs) are a special category of electric vehicles (EVs) as far as EMC compliance is concerned. The problem mainly lies with the open body design and cost cutting measures being exercised by the manufactures which makes Electromagnetic compatibility (EMC) compliance challenging. Objective: Though it is sometimes possible to resolve EMC malfunctions related to motor power cable, cables & wiring harness etc. using external techniques post design stage, but controller being a closed and typical element makes it difficult to improve against EMC malfunctions using external techniques. This paper would concentrate on the controller design parameters and improvement of the same in terms of Electromagnetic compatibility (EMC) and performance efficiency at the design stage itself.
Technical Paper

Rapid Prototyping and Implementation of traction motor drive for E- Mobility

2019-11-21
2019-28-2472
Objective / Question: Is it possible to extend the envelope of simulation driven design and its advantages to development of complex dynamic systems viz. traction motor drives? The objective that then follows is how to enable OEM/Tier-1s to reduce wastes in the process of traction motor controller design, development, optimization and implementation. Motor control design to validation process is time consuming and tricky! Additionally, the requirement of software knowledge to write code to implement drive engineer's control ideas. The challenges here are - to name a few - algorithm for real time, addressing memory constraints, debugging, comprehending mathematical overflows, portability & BOM cost. These introduces wastes in parameters like time, cost, performance, efficiency and reliability. Methodology: Developing a new traction motor controller for E Mobility takes 18 - 24 months typically. 2 distinct activities take place in a loop.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

Design analysis of a retrofit system for an electric two wheeler

2019-11-21
2019-28-2482
Two wheelers are the major mode of single transport in the metros of India. They contribute about 70 % of the auto market unit wise. Also it is proved from the research that for per unit energy consumption they contribute more to the environment emission. Conventional IC engine based energy supply unit can be replaced with an electric DC motor with chargeable battery as the energy source for the two wheelers present in the market. In the current research, engine is replaced with the motor, batteries and controller. The above system is placed on the space emptied by the conventional engine, The design developed is tested on different gradients for identifying the motor torque for minimum and maximum resistances available on the road. The paper provides an insight on the of the torque requirements based on variable resistances required for two wheelers. Also the system will be used as a retrofit for the existing IC engine bikes to be converted in electric bikes.
Technical Paper

Numerical Simulation of Battery Cooling Systems in Electric Vehicles

2019-11-21
2019-28-2481
As electric vehicles are working on stored energy in batteries or cells. These units needs to be regulated by cool down or heat up to perform utmost and to ensure individual cell life. Battery cooling systems are installed on vehicles to regulate the temperature around these packs. To ensure maximum performance of these units, numerical simulation is performed. Optimization (includes study of cover design, number of openings, area & position of openings around the cover in which unit is mounted) of flow rate as well as flow path into battery cooling systems is carried out. This study is carried to design a stable unit.
Technical Paper

Changes in user experiences of electric vehicles

2019-11-21
2019-28-2489
Research Objective The objective of the paper is to research what are the changes in experiences being brought about due to the advent of Electric Vehicles (EVs). EVs are silent, have less complex propulsion system, and have free space under the hood, amongst other things. Each change brings about both good and bad experiences across the spectrum of users. Some of the bad experiences can be safety incidents leading to death as well. Researching the areas that are harmful to end users, including pedestrians, will be our focus area. Methodology Our methodology will look at the changes at the vehicle architecture level which are inherent to the EV design. Research how are the experiences so far due to these changes. Are these just inconveniences or safety hazards? EVs have excellent NVH characteristics. A farmer may love a silent tractor, but a racing enthusiast may not like a relatively silent sports car.
Technical Paper

Design improvements in advanced automotive batteries using AI

2019-11-21
2019-28-2505
Introduction: The advent of electric mobility is changing the conventional mobility techniques and with this comes challenges to improve the performance of battery to optimize power consumption in electric vehicles. Objective: This paper would focus on the optimization of battery performance incoherent with vehicle power consumption behavior in terms of efficiency using decision-making ability based on given input signals
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

A Machine Learning based Multi-objective Multidisciplinary Design Optimization (MMDO) for Lightweighting the Automotive Structures

2019-11-21
2019-28-2424
The present work involves Machine Learning (ML) based Multi-objective Multidisciplinary Design Optimization (MMDO) for lightweighting the automotive structures. The challenge in deployment of MMDO algorithms in solving real-world automotive structural design problems is the enormous time involved in solving full vehicle finite element models that involve large number of design variables and multiple performance constraints pertaining to vehicle dynamics, durability, crash and NVH domains. With the availability of powerful workstations and using the advanced Computer Aided Engineering (CAE) tools, it has become possible to generate huge sets of simulation data pertaining to multiple domains.
X