Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Characterizations of Deployment Rates in Automotive Technology

2012-04-16
2012-01-1057
Passenger cars in the United States continue to incorporate increasing levels of technology and features. However, deployment of technology requires substantial development and time in the automotive sector. Prior analyses indicate that deployment of technology in the automotive sector can be described by a logistic function. These analyses refer to maximum annual growth rates as high as 17% and with developmental times of 10-15 years. However, these technologies vary widely in complexity and function, and span decades in their implementation. This work applies regression with a logistic form to a wide variety of automotive features and technologies and, using secondary regression, identifies broader trends across categories and over time.
Journal Article

Fuel Economy Benefits and Aftertreatment Requirements of a Naturally Aspirated HCCI-SI Engine System

2008-10-06
2008-01-2512
This vehicle simulation study estimates the fuel economy benefits of an HCCI engine system and assesses the NOx, HC and CO aftertreatment performance required for compliance with emissions regulations on U.S. and European regulatory driving cycles. The four driving cycles considered are the New European Driving Cycle, EPA City Driving Cycle, EPA Highway Driving Cycle, and US06 Driving Cycle. For each driving cycle, the following influences on vehicle fuel economy were examined: power-to-weight ratio, HCCI combustion mode operating range, driving cycle characteristics, requirements for transitions out of HCCI mode when engine speeds and loads are within the HCCI operating range, fuel consumption and emissions penalties for transitions into and out of HCCI mode, aftertreatment system performance and tailpipe emissions regulations.
Technical Paper

Comparison of NOx Level and BSFC for HPL EGR and LPL EGR System of Heavy-Duty Diesel Engine

2007-08-05
2007-01-3451
Diesel engines are the most commonly used power plant of freight and public transportations in the world. Also, the newly developed injection system, Common Rail system, increases the demands for both light and heavy duty diesel vehicles. On the other hand, stringent emission regulations are being proposed with growing concern on NOx and PM emissions from diesel engines. Future emission regulations require advanced emission control technologies, such as EGR and SCR. Exhaust gas recirculation (EGR) is a commonly used technique to reduce NOx emission. In this paper, a model-based investigation was conducted to compare the effect of high pressure loop (HPL) EGR and low pressure loop (LPL) EGR system on NOx level and BSFC of a heavy-duty diesel engine. A WAVE model was created to simulate EURO 3 engine and each component of the engine was modeled using CATIA and WaveMesher.
Technical Paper

The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine

2004-10-25
2004-01-2909
As a part of the effort to comply with increasingly stringent emission standards, engine manufacturers strive to minimize engine oil consumption. This requires the advancement of the understanding of the characteristics, sources, and driving mechanisms of oil consumption. This paper presents a combined theoretical and experimental approach to separate and quantify different oil consumption sources in a production spark ignition engine at different speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on engine operating speed and load. Liquid oil distribution on the piston was studied using a Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder parameters for oil transport and oil consumption, such as liner temperatures and land pressures, were measured.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Current Developments in Spark-Ignition Engines

1976-02-01
760606
This paper reviews the major changes that have occurred in spark-ignition engine design and operation over the last two decades. The automobile air pollution problem, automobile emission standards, and automobile fuel economy standards -- the factors which have and are producing these changes -- are briefly described. The major components in spark-ignition engine emission control systems are outlined, and advances in carburetion, fuel injection, ignition systems, spark retard and exhaust gas recycle strategies, and catalytic converters, are reviewed. The impact of these emission controls on vehicle fuel economy is assessed. The potential for fuel economy improvements in conventional spark-ignition engines is examined, and promising developments in improved engine and vehicle matching are outlined.
Technical Paper

Aggregate Emissions from the Automobile Population

1974-02-01
740536
A methodology is presented with which aggregate emissions from the in-use automobile population can be calculated for any given calendar year. The data base needed for such a calculation is discussed, and areas in which further research is needed are pointed out. Results of a series of calculations are then presented showing the effect on aggregate emissions of various control strategies. The effects of an inspection/maintenance and retrofit program, different vehicle population growth rates, catalyst deterioration in use, and various schedules of new car emission standards for post-1975 vehicles are presented. It is shown that the rate at which old, higher-polluting vehicles are retired from the in-use vehicle population is the major factor in determining the rate at which aggregate emissions will decrease in the 1970s, with the precise level of post-1975 standards only becoming important in the 1980s.
X