Refine Your Search

Topic

Search Results

Standard

Aircraft Fuel System Design Guidelines

2023-09-27
WIP
AIR7975A
This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles. It is intended that later issues of this document will include appendices which give specific considerations for military aircraft, smaller commercial aircraft, and rotorcraft.
Standard

Synthetic Jet Fuels from Non-Petroleum Feed Stocks

2023-02-20
CURRENT
AIR6148
This SAE Aerospace Information Report (AIR) provides general information on the developing subject of synthetic jet fuels derived from non-petroleum feed stocks. It addresses synthetic jet fuel properties and other topics associated with their use and is intended as a guide to assist aviation fuel system designers in considering important information on fuel properties when designing aircraft fuel systems and components. The AIR is limited to “drop-in” fuels that meet the requirements of the respective fuel specifications and are compatible with typical aircraft and ground refueling systems. While some key properties are included in this AIR for discussion, the reader should utilize documents such as MIL-HDBK-510 or the ASTM International research reports for a more-detailed review of fuel properties. AIR7484 also gives more details on fuel properties, specifically as they relate to airframe fuel system design.
Standard

Electrical Bonding of Aircraft Fuel Systems

2022-10-04
CURRENT
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

Aircraft Flame Arrestor Installation Guidelines and Test Methods

2021-08-26
CURRENT
ARP5776
The scope of this document is to provide pertinent information on demonstrating the performance of Flame Arrestors, also known as Fuel Vent Protectors (FVPs), in preventing the propagation of a deflagration when the arrestors are subjected to aerospace-representative flames produced by the venting of flammable gas through the arrestor. Test procedures for two separate combustion-loading profiles are presented herein: The flame hold test condition, and the flame propagation test condition. For the flame hold test condition, the applicability of two separate critical flows is discussed in which one flow results in the greatest flame arrestor temperature and a second flow results in the greatest temperature of the surrounding structure.
Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

Fuel Level Point Sensing

2020-11-30
CURRENT
AIR6325
This report is intended to identify the various existing technologies used for a fuel level sensing system. In addition to sensing technologies, it describes the basic architecture of fuel level sensing systems and their association with fuel gauging system to increase integrity of fuel measurement and management. As the fuel level sensing system is generally based on electrical components within fuel tanks, a specific focus is made on fuel tank explosion safety protection. An overview of the capacitive fuel gauging operation can be found in AIR5691.
Standard

Acceptance Test Procedures and Standards to Ensure Clean Fuel System Components

2020-10-01
CURRENT
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Self-Sealing Breakaway Valves for Crash-Resistant Aircraft Fuel Systems

2020-03-19
CURRENT
AIR1616B
MIL-STD-1290, 14 CFR 27.952, and 14 CFR 29.952 provide crash resistant fuel system design and test criteria that significantly minimize fuel leaks and occurrence of post-crash fire in survivable impacts. This document does not change and does not authorize changes in or deviations from MIL-Standard or regulatory requirements. This document provides guidance for the design, performance, and test criteria for self-sealing breakaway valves.
Standard

Thesaurus for Fuel System Components

2020-02-24
CURRENT
AIR1615B
This document provides a summary of names commonly used throughout the industry for aircraft fuel system components. It is a thesaurus intended to aid those not familiar with the lexicon of the industry.
Standard

Aircraft Fuel System Design Guidelines

2019-12-05
CURRENT
AIR7975
This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub-systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles. It is intended that later issues of this document will include appendices which give specific considerations for military aircraft, smaller commercial aircraft, and rotorcraft.
Standard

Composite Fuel Tanks, Fuel System Design Considerations

2019-05-16
CURRENT
AIR5774
This SAE Aerospace Information Report (AIR) is a compilation of engineering references and data useful to the technical community that can be used to ensure fuel system compatibility with composite structure. This AIR is not a complete detailed design guide and is not intended to satisfy all potential fuel system applications. Extensive research, design, and development are required for each individual application.
Standard

Recommendations for Fuel and Oil System Schematics

2019-05-07
CURRENT
ARP1482B
This document recommends and sets forth a set of symbols representing the components making up aircraft fuel and oil systems. The intended result is uniformity in system schematics so that they may be easily understood throughout the aerospace industry.
Standard

Aircraft Flexible Tanks General Design and Installation Recommendations

2019-05-07
CURRENT
AIR1664A
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2.
Standard

Optical equipment safety in fuel tanks

2018-11-15
WIP
ARP7977
This project aims to develop a framework of requirements which support safe installation and operation of optical devices within an aircraft fuel tank, specifically: 1: To determine optical power and energy limits which ensure safe operation of optical installations within an aircraft fuel tank over aircraft life and under all phases of flight, taking the limits provided in IEC 60079-28:20015 as a starting point. 2: To demonstrate optical and electrical power and energy equivalences, where possible. 3: To determine requirements for optical installations, including bonding and electrostatic discharge for non-conductive components such as optical fibres. 4: To provide guidelines for analysis of the hazards presented by the typical internal components of optical devices, such as failure modes of photo diodes and cells.
X