Refine Your Search

Search Results

Viewing 1 to 17 of 17
Standard

Constant Volume Sampler System for Exhaust Emissions Measurement

2011-09-06
CURRENT
J1094_201109
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

Continuous Hydrocarbon Analysis of Diesel Emissions

2002-10-21
CURRENT
J215_200210
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented. This SAE Recommended Practice provides for the continuous measurement of the hydrocarbon concentration in diesel exhaust.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1993-05-01
HISTORICAL
J1045_199305
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used to determine the effectiveness of evaporative emissions control systems to control refueling emissions. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1992-06-01
HISTORICAL
J1094_199206
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

DIESEL ENGINE EMISSION MEASUREMENT PROCEDURE

1990-06-01
HISTORICAL
J1003_199006
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission levels of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighting factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NOx. All emissions are measured during steady-state engine operation.
Standard

CHEMICAL METHODS FOR THE MEASUREMENT OF NONREGULATED DIESEL EMISSIONS

1989-10-01
HISTORICAL
J1936_198910
This document encompasses analytical procedures for measuring nonregulated diesel exhaust emissions. Methods are recommended for the measurement of aldehydes and carbonyl compounds, sulfates and the characterization of diesel exhaust particulates. Informational methods are presented for the measurement of polycyclic aromatic hydrocarbons (PAH) in diesel exhaust particulate samples. The procedures are based on current proven chemical and engineering practices. However, it should be noted that the procedures are subject to change to keep pace with established experience and technology.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1988-06-01
HISTORICAL
J215_198806
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1980-01-01
HISTORICAL
J215_198001
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1978-04-01
HISTORICAL
J1094A_197804
This SAE Recommended Practice describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. In some areas of CVS practice, alternate procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: 1. Introduction 2. Definitions 3. Test Equipment 3.1 Sampler 3.2 Bag Analysis 3.3 Modal Analysis 3.4 Instrument Operating Procedures 3.5 Supplementary Discussions 3.6 Tailpipe Connections 3.7 Chassis Dynamometer 4. Operating and Calibrating Procedure 4.1 Calibration 4.2 Operating Procedures 5. Data Analysis 5.1 Bag Analysis 5.2 Modal Analysis 5.3 Background 5.4 Fuel Economy 6. Safety
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1977-09-01
HISTORICAL
J171A_197709
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F (15.6 to 28.9 C). 2 A 7.5 mile (12.1 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 7.5 mile (12.1 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170a. SAE J170a employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1973-08-01
HISTORICAL
J1045_197308
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used for determining the reduction in emissions achieved with emission control hardware. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1972-07-01
HISTORICAL
J171A_197207
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F (15.6 to 28.9 C). 2 A 7.5 mile (12.1 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 7.5 mile (12.1 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170. SAE J170 employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1970-11-01
HISTORICAL
J215_197011
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1970-09-01
HISTORICAL
J171_197009
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 hr soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F. 2 A 7 mile run on a chassis dynamometer. 3 A 1 hr hot soak immediately following the 7 mile run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170. SAE J170 employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
X