Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Infrared Camera for ADAS and Autonomous Sensing

2021-08-11
Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Diesel-Water Emulsion and Water Fumigation in a Small Bore Diesel Engine

2020-10-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The water to diesel ratio was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. A stable water-diesel emulsion was prepared using a combination of equal proportions (1:1 by volume) of Span 80 and Tween 80. The mixture of Span 80 in diesel and Tween 80 in water was homogenized using an IKA Ultra Turrax homogenizer with tip stator diameter 18mm at 5000 rpm for 2 minutes. The water-in-diesel emulsions thus formulated were kinetically stable and appeared translucent. No phase separation was observed on storage for approximately 105 days.
Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Enclosure-In-Chamber Setup to Achieve Near-Zero Background Concentrations for Brake Emissions Testing

2020-10-05
2020-01-1634
Measuring brake emission is still a challenging non-standardized task. Extensive research is ongoing. Updates of work in progress are presented at SAE Brake Colloquium and PMP meetings. However, open items include how to achieve lower background concentration and how to design the brake enclosure. A low background concentration is essential as brake events are short and some emit in the range of reported background levels. Hence these emissions are difficult to distinguished from the background level. Even more critical, a high background concentration can result in a wrong particle number emissions value, either overestimated, background counted as emissions, or underestimated, background level subtracted, and low emission events no longer detected and counted. However, reducing the background level to less than 100 #/cm³ appeared to be quite challenging.
Technical Paper

An Experimental Setup for Investigations on the Boundary Layer Dynamics

2020-10-05
2020-01-1617
The frictional behavior of a tribological contact is influenced by the dynamics in the forming boundary layer. Recurring structures, built up through self-organizing effects, were found in various frictional systems. To investigate those phenomena on a macroscopic scale and to better understand dynamical processes such as the formation and decay of contact patches, the first revision of the Wear Debris Investigator (WDI) was introduced in 2017. A friction gap is formed between two coaxial horizontally arranged discs. To mimic the presence of particles, artificial wear dust is fed into the gap. With a camera the formation of the boundary layer is recorded in situ. An implemented normal force and torque sensor enables to recognize correlations between the formed boundary layer and the occurring frictional forces. Numerous measurements revealed an insufficient precision of the previous WDI.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Micro-Macro Acoustic Modeling of Heterogeneous Foams with Nucleation Perturbation

2020-09-30
2020-01-1526
The properties of a polyurethane foam are greatly influenced by the addition of graphite particles during the manufacturing process, initially used as a fire retardant. These thin solid particles perturbate the nucleation process by generating bubbles in its immediate vicinity. The preponderance of work so far has focused on foams that are locally relatively homogeneous. We propose a model for locally inhomogeneous foams (including membrane effects) consisting of a random stack of spheres that permits one to represent certain pore size distribution functions. The cellular structure of the foam is obtained through a Laguerre tessellation and the solid skeleton determined from the minimization of surface energy (Surface Evolver). The structure of real foam samples is analyzed using X-ray computed tomography and scanning electron microscopy followed by image processing to create computerized three-dimensional models of the samples.
Technical Paper

Numerical Analysis of the Influences of Wear on the Vibrations of Power Units

2020-09-30
2020-01-1506
Numerical Analysis of the Influences of Wear on the Vibrations of Power Units Yashwant Kolluru, Rolando Doelling eBike Department Robert Bosch GmbH Kusterdingen, Germany yashwant.kolluru@de.bosch.com rolando.doelling@de.bosch.com Lars Hedrich Institute of Informatics Goethe University Frankfurt Frankfurt, Germany hedrich@em.informatik.uni-frankfurt.de The prime factor, which influences vibrations of electro-mechanical drives, is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and NVH models of drive unit. Wear is a complex process and understanding it is essential for vibro-acoustics. The paper initially depicts finite element static model used for wear calculations. The special subroutines developed, aids in coupling the wear equations, various contact and friction formulations to the numerical model.
Technical Paper

A Simulation Study Assessing the Viability of Shifting the Location of Peak In-Cylinder Pressure in Motored Experiments

2020-09-27
2020-24-0009
Some hybrid powertrains utilize an engine to benefit from the power density of the liquid fuel while the electric machine; for transient needs, for very low loads and where legislation prohibits any gaseous and particulate emissions. Consequently, the operating drive cycle of an engine also shifted from its conventional, broad range of speed and load to a narrower operating range of high thermal efficiency. This requires a drastic departure from conventional engine architecture, meaning that analytical models used to predict the behaviour of the engines early in the design cycle are no longer always applicable. Friction models are an example of sub-models which struggle with previously unexplored engine architectures. The pressurized motored method has proven to be a simple experimental setup which allows a robust FMEP determination against which engine friction simulation can be fine-tuned.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology

2020-09-27
2020-24-0010
The numerical reconstruction of the liquid jet generated by a multi-hole injector, operating in flash-boiling conditions, has been developed by means of an Eulerian- Lagrangian CFD code and validated thanks to experimental data collected with schlieren and Mie scattering imaging techniques. The model has been tested with different injection parameters in order to recreate various possible engine thermodynamic conditions. The work carried out is framed in the growing interest present around the gasoline direct-injection systems (GDI). Such technology has been recognized as an effective way to achieve better engine performance and reduced pollutant emissions. High-pressure injectors operating in flashing conditions are demonstrating many advantages in the applications for GDI engines providing a better fuel atomization, a better mixing with the air, a consequent more efficient combustion and, finally, reduced tailpipe emissions.
Technical Paper

Thermal Imaging of a Li-Ion Battery for the Estimation of the Thermal Parameters and Instantaneous Heat Dissipated

2020-09-27
2020-24-0014
The electrochemical performance of a lithium-ion battery is strongly affected by the temperature. During charge and discharge cycles, batteries are subjected to an increment of temperature that can accelerate aging and loss of efficiency if critical values are reached. Knowing the thermal parameters that affect the heat exchange between the battery surface and the surrounding environment (air, cooling fins, plates, etc…) is fundamental to their thermal management. In this work, thermal imaging is applied to a laminated lithium-ion battery as a non-invasive temperature-indication method. Measurements are taken during the discharge phase and the following cooling down until the battery reaches the ambient temperature. The 2d images are used to analyze the homogeneity of the temperature distribution on the battery surface. Then, experimental results are coupled with mathematical correlations.
Technical Paper

Design and analyse of air intake in manifold student formula vehicle

2020-09-25
2020-28-0485
The SAE organization constrained a rule to place a restrictor of diameter 20mm in between the throttle body and the engine inlet . The restrictor is an component which reduces and regulates the mass flow of air into the engine inlet. For this a venture nozzle will be used as a restrictor in vehicle to decrease the air pressure and increase the velocity in the intake manifold . The aim of our proposed work is to minimize the pressure drop by changing the convergent and divergent angles in the restrictor. For this by using solidworks sixteen various models with convergent angle as 11,13,15,17 degrees and divergent angle as 3,5,7,9 degrees was designed and analysed using CFD fluent in ansys work bench. In this 13 degree as convergent and 5 degree as divergent model was found to have laminar air flow through out with optimum pressure drop. The plenum is a large duct which equalise the pressure drop caused by restrictor in order to improve the efficiency of engine.
Technical Paper

Modeling and Simulation of A Fighter Aircraft Cabin Temperature Control System Using Amesim

2020-09-25
2020-28-0497
Environmental Control System (ECS) of an aircraft is a complex system which operates classically in an air standard refrigeration cycle. ECS controls the temperature, pressure and flow of supply air to the cockpit, cabin or occupied compartments. The air cycle system of ECS takes engine bleed air as input. Parameters like bleed air pressure and temperature, mass flow, the external factors like ambient temperature, pressure, and aircraft attitude affect the performance of ECS to a large extent especially during transient. So, it is very important to consider the transient characteristics of these parameters in the design stage itself in order to ascertain the dynamic response of the system. This paper explains in detail the importance of transient input characteristics during the detailed design of ECS. A typical temperature control scheme for combat aircraft ECS has been studied and modeled in LMS AMESim.
Technical Paper

Enhancing the Mechanical and Metallurgical Behavior of Post-Processing on Friction Stir Processed AA8011 with NiTi-SMAs and Si3N4 Surface Hybrid Composites

2020-09-25
2020-28-0419
This limited research was extended to study the modification surface amendment of materials through Friction Stir Process (FSP) with nanoparticle addition followed by the post-processing method. In this paper, strengthened the surface and core properties of AA8011 by adding nanoparticles such as Nitinol Shape Memory Alloy (NiTi-SMAs) and Silicon Nitride (Si3N4) through FSP followed by three different way of post-processing techniques like case hardening, case harden with the shot peening and laser peening. During FSP the use of NiTi-SMAs and Si3N4 as reinforcement interlocked the grains in nanocomposites of the processed zone. In addition, Post-processing promises a performance enhancement of core and surface hardness, ultimate tensile strength, impact and homogenizing their microstructure which is observed through scanning electron microscopic observations.The study has revealed that the laser peening surface has preferably higher performance than other post-processing techniques.
Technical Paper

Investigation on the Effect of Pulsed Frequency on Microstructure and Hardness of Alloy C-2000 by Current Pulsing

2020-09-25
2020-28-0420
The objective of the study is to investigate the effect of current pulsation frequency on the weld bead microstructure, segregation, and hardness of Hastelloy C-2000 weldments. Bead on Plate (BoP) welds was made by using the Pulsed Current Gas Tungsten Arc Welding method (PCGTAW) at eleven different frequencies. The weld bead width and depth of penetration was measured with the help of Dinolite macro analyzer. The microstructure of weldments is further examined through an optical microscope and Scanning Electron Microscopy (SEM) to identify the type of grain, grain coarsening and extent of the Heat Affected Zone (HAZ). The grain structure turns into finer and equiaxed in all cases and there was an optimum frequency range over which the significant grain refinement was observed. Microsegregation of alloying elements was computed with the aid of Energy Dispersive X-ray Spectroscopy (EDS). Vickers Hardness Tester was used to measure the hardness of the weld samples at ambient conditions.
Technical Paper

Ergonomic study of occupant seating using near-vertical posture for shared mobility applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and government around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility based travelling options in India, it is necessary to make such options comfortable and cost-effective. To make the mobility option cost-effective, it is important to comfortably allow as many passengers per vehicle foot-print as possible. This paper aims to evaluate a novel method of occupant seating to maximize the number of passages the vehicle cabin can accommodate. Since shared mobility options are used for a short duration of commute, the comfort of the seat can be compromised for increasing the no. of occupants. This paper studies the relation between occupant comfort and the inclination of seat cushion.
Technical Paper

Experimental and Numerical Investigation of Contact Pressure Existance in Sealing Structure

2020-09-25
2020-28-0343
Sealing is one of the important components in automotive and aerospace industry. The primary function of lip seal is to protect contamination and retaining the lubricant. This investigation relates to study of contact pressure existence on dynamic sealing. Sealing for steering intermediate shaft requires sliding motion between shaft and seal as well as protection of lubricant from contamination and retention. Contact pressure analysis of Steering intermediate shaft with hyper elastic rubber seal is done at static as well as sliding condition using ABAQUS. Experiments were also conducted to check contact pressure between seal and shaft by using Fuji-pressure film sensor. The result from CAE analysis was compared with experimental data. This analysis of contact pressure helps to support enough interference between seal and shaft with satisfies the need of sealing as well as sliding in intermediate shaft.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. In the present work, the static and dynamic shift quality of a 300 Nm manual transmission is analyzed with different synchronizer sleeve strut detent profiles. The synchronizer sleeve strut detent groove profile play a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque.
X