Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Diesel-Water Emulsion and Water Fumigation in a Small Bore Diesel Engine

2020-10-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The water to diesel ratio was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. A stable water-diesel emulsion was prepared using a combination of equal proportions (1:1 by volume) of Span 80 and Tween 80. The mixture of Span 80 in diesel and Tween 80 in water was homogenized using an IKA Ultra Turrax homogenizer with tip stator diameter 18mm at 5000 rpm for 2 minutes. The water-in-diesel emulsions thus formulated were kinetically stable and appeared translucent. No phase separation was observed on storage for approximately 105 days.
Technical Paper

Enclosure-In-Chamber Setup to Achieve Near-Zero Background Concentrations for Brake Emissions Testing

2020-10-05
2020-01-1634
Measuring brake emission is still a challenging non-standardized task. Extensive research is ongoing. Updates of work in progress are presented at SAE Brake Colloquium and PMP meetings. However, open items include how to achieve lower background concentration and how to design the brake enclosure. A low background concentration is essential as brake events are short and some emit in the range of reported background levels. Hence these emissions are difficult to distinguished from the background level. Even more critical, a high background concentration can result in a wrong particle number emissions value, either overestimated, background counted as emissions, or underestimated, background level subtracted, and low emission events no longer detected and counted. However, reducing the background level to less than 100 #/cm³ appeared to be quite challenging.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elsastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

Inverse Vibration Problem Used for the Characterization of the Damping Added by a Trim Foam on a Plate

2020-09-30
2020-01-1580
Many solutions exist to insure the NVH comfort of ground and air vehicles, like heavy mass (bitumen pads), viscoelastic treatments and absorbing foams. The trim foam is an alternative to heavy solutions. To know the potential of the foam, a study of its capacity to damp vibration is done. A system, composed by a suspended plate, with a foam on it, is characterized in different cases of contact at the foam-plate interface (glued or not) and with different types of foam. An experimental test facility is developed to identify the global damping of the structure: a laser vibrometer measures the displacement field of the foam-plate structure, an inverse method is used to determine the structural parameters. By changing the contact at the interface, it is possible to identify the contribution of the friction forces to the global damping of the structure. Another type of damping is the viscoelastic damping due to the intrinsic characteristics of the trim foam.
Technical Paper

A Simulation Study Assessing the Viability of Shifting the Location of Peak In-Cylinder Pressure in Motored Experiments

2020-09-27
2020-24-0009
Some hybrid powertrains utilize an engine to benefit from the power density of the liquid fuel while the electric machine; for transient needs, for very low loads and where legislation prohibits any gaseous and particulate emissions. Consequently, the operating drive cycle of an engine also shifted from its conventional, broad range of speed and load to a narrower operating range of high thermal efficiency. This requires a drastic departure from conventional engine architecture, meaning that analytical models used to predict the behaviour of the engines early in the design cycle are no longer always applicable. Friction models are an example of sub-models which struggle with previously unexplored engine architectures. The pressurized motored method has proven to be a simple experimental setup which allows a robust FMEP determination against which engine friction simulation can be fine-tuned.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

Design and analyse of air intake in manifold student formula vehicle

2020-09-25
2020-28-0485
The SAE organization constrained a rule to place a restrictor of diameter 20mm in between the throttle body and the engine inlet . The restrictor is an component which reduces and regulates the mass flow of air into the engine inlet. For this a venture nozzle will be used as a restrictor in vehicle to decrease the air pressure and increase the velocity in the intake manifold . The aim of our proposed work is to minimize the pressure drop by changing the convergent and divergent angles in the restrictor. For this by using solidworks sixteen various models with convergent angle as 11,13,15,17 degrees and divergent angle as 3,5,7,9 degrees was designed and analysed using CFD fluent in ansys work bench. In this 13 degree as convergent and 5 degree as divergent model was found to have laminar air flow through out with optimum pressure drop. The plenum is a large duct which equalise the pressure drop caused by restrictor in order to improve the efficiency of engine.
Technical Paper

Modeling and Simulation of A Fighter Aircraft Cabin Temperature Control System Using Amesim

2020-09-25
2020-28-0497
Environmental Control System (ECS) of an aircraft is a complex system which operates classically in an air standard refrigeration cycle. ECS controls the temperature, pressure and flow of supply air to the cockpit, cabin or occupied compartments. The air cycle system of ECS takes engine bleed air as input. Parameters like bleed air pressure and temperature, mass flow, the external factors like ambient temperature, pressure, and aircraft attitude affect the performance of ECS to a large extent especially during transient. So, it is very important to consider the transient characteristics of these parameters in the design stage itself in order to ascertain the dynamic response of the system. This paper explains in detail the importance of transient input characteristics during the detailed design of ECS. A typical temperature control scheme for combat aircraft ECS has been studied and modeled in LMS AMESim.
Technical Paper

Experimental Analysis of Injector Nozzle Coking on Multi-cylinder Diesel Engine Considering Worst-Case Operating Conditions Including Engine Exhaust Brake.

2020-09-25
2020-28-0332
"Injector nozzle coking can severely limit engine performance by limiting the amount of fuel delivered to the combustion chamber and altering the spray pattern. Injector nozzle coking is also one of the most sensitive measures of diesel fuel quality. Formation of deposits within the holes of the injector nozzle or on the outside of the injector nozzle may have an adverse effect on overall system performance". "There is no single factor that results in nozzle coking but can be classified in four major areas e.g. spray hole geometry, application duty cycle, nozzle localized temperature and the fuel quality". "This paper provides a critical review of the current understanding of the main factors affecting the deposit formation. Engine was tested by motoring dynamometer using test cycle generated by Cummins Inc, as an attempt to try to simulate field conditions.
Technical Paper

Ergonomic study of occupant seating using near-vertical posture for shared mobility applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and government around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility based travelling options in India, it is necessary to make such options comfortable and cost-effective. To make the mobility option cost-effective, it is important to comfortably allow as many passengers per vehicle foot-print as possible. This paper aims to evaluate a novel method of occupant seating to maximize the number of passages the vehicle cabin can accommodate. Since shared mobility options are used for a short duration of commute, the comfort of the seat can be compromised for increasing the no. of occupants. This paper studies the relation between occupant comfort and the inclination of seat cushion.
Technical Paper

Experimental and Numerical Investigation of Contact Pressure Existance in Sealing Structure

2020-09-25
2020-28-0343
Sealing is one of the important components in automotive and aerospace industry. The primary function of lip seal is to protect contamination and retaining the lubricant. This investigation relates to study of contact pressure existence on dynamic sealing. Sealing for steering intermediate shaft requires sliding motion between shaft and seal as well as protection of lubricant from contamination and retention. Contact pressure analysis of Steering intermediate shaft with hyper elastic rubber seal is done at static as well as sliding condition using ABAQUS. Experiments were also conducted to check contact pressure between seal and shaft by using Fuji-pressure film sensor. The result from CAE analysis was compared with experimental data. This analysis of contact pressure helps to support enough interference between seal and shaft with satisfies the need of sealing as well as sliding in intermediate shaft.
Technical Paper

Performance Assessment of Urea-Selective Catalytic Reduction (SCR) Technology in On-Road 6-Cylinder Heavy-Duty Diesel Engine

2020-09-25
2020-28-0324
Diesel engines have been widely popularized as a power source for vehicles because of its reliable horsepower and excellent fuel economy. Diesel engines are considered as one of the dangerous sources of pollution. PM and NOx are the dominant pollutants emitting in exhaust gases. As per the supreme court order, Indian market will see only the sale of Bharat Stage-VI vehicles from April 1, 2020. More stringent NOx standards in BS-VI legislation for heavy duty vehicles would help to reduce NOx emission around 88.57% and 86.85% for steady and transient test cycles respectively. Urea SCR technology is used for reduction of NOx level. SCR is a media of converting NOx into diatomic nitrogen and water with the aid of Cu-Zeolite catalyst. Aqueous urea named as DEF is used as reductant which is added in a stream of exhaust gases. This experimental study focuses on performance evaluation of urea-SCR system in heavy duty vehicle.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. In the present work, the static and dynamic shift quality of a 300 Nm manual transmission is analyzed with different synchronizer sleeve strut detent profiles. The synchronizer sleeve strut detent groove profile play a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque.
X