Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Diesel-Water Emulsion and Water Fumigation in a Small Bore Diesel Engine

2020-10-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The water to diesel ratio was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. A stable water-diesel emulsion was prepared using a combination of equal proportions (1:1 by volume) of Span 80 and Tween 80. The mixture of Span 80 in diesel and Tween 80 in water was homogenized using an IKA Ultra Turrax homogenizer with tip stator diameter 18mm at 5000 rpm for 2 minutes. The water-in-diesel emulsions thus formulated were kinetically stable and appeared translucent. No phase separation was observed on storage for approximately 105 days.
Technical Paper

Determination of Diffusion Capability of Oxygen Through Brake Pads From the Surface Towards the Interior

2020-10-05
2020-01-1616
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the brake pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. In previous work from RIMSA, it was observed that iron sulphide had been reacted below the surface of the brake pad, suggesting that tribochemistry does not only take place on the surface. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a peculiar microstructure (rough microstructure) when it becomes oxide that can be recognized easily, making it a good marker.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during the braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

Enclosure-In-Chamber Setup to Achieve Near-Zero Background Concentrations for Brake Emissions Testing

2020-10-05
2020-01-1634
Measuring brake emission is still a challenging non-standardized task. Extensive research is ongoing. Updates of work in progress are presented at SAE Brake Colloquium and PMP meetings. However, open items include how to achieve lower background concentration and how to design the brake enclosure. A low background concentration is essential as brake events are short and some emit in the range of reported background levels. Hence these emissions are difficult to distinguished from the background level. Even more critical, a high background concentration can result in a wrong particle number emissions value, either overestimated, background counted as emissions, or underestimated, background level subtracted, and low emission events no longer detected and counted. However, reducing the background level to less than 100 #/cm³ appeared to be quite challenging.
Technical Paper

A Study of the Interactions Between Phenolic Resin and Metal Sulphides and their Contribution to PAD Performance and Wear

2020-10-05
2020-01-1600
In order to keep the coefficient of friction stable, some additives such as metal sulphides, are included in the brake pads formulation. Previous work from RIMSA has shown that oxidation temperature range of the metal sulphides can be one of the key properties to explain their contribution to the performance and wear of a PAD. This new work is a step forward in the interpretation of the mechanism of sulphides as chemically active additives in the brake pads. Phenolic resin is the matrix of the brake pads and starts to decompose around 300 ºC in presence of oxygen and temperature. In order to establish a connection on between sulphide oxidation and phenolic resin degradation, several studies based on heat treatment of blends of different metal sulphides (Iron sulphide, Tin sulphide and Composite sulphide) with phenolic resin have been done. Then the material evolution was studied with techniques such as TGA - DSC, XRD, IR and SEM - EDS.
Technical Paper

Evaluation of a Low-Metals, Non-Petrochemical Coke for Use in Automotive Friction Materials

2020-10-05
2020-01-1603
A study was performed to compare the performance of automotive friction elements, each manufactured with one of two different coke fillers. Coke #1 is a conventional calcined petroleum coke, and coke #2 a proprietary, calcined coke manufactured from a non-petrochemical feedstock. Subject coke materials were fully characterized, physically and chemically. Both coke materials are similar in their respective physical properties, including morphology, hardness, and crush strength. However, there is a significant difference in the trace metal content of the two materials, with coke #1 containing a higher content of sulfur, calcium, iron, nickel, and vanadium than coke #2. Nickel and vanadium are considered potential environmental hazards. Initial friction element evaluation was performed using the J661 Brake Lining Quality Test Procedure (Chase Test). Ultimately each coke material was formulated into two different automotive brake elements.
Technical Paper

Design and Simulation of Braking System for ATV

2020-10-05
2020-01-1611
Design and Simulation Analysis of Braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, Structural, Thermal, Dynamic, Computational Flow Dynamics, Vibrational & Fatigue Behaviour of Ventilated brake disc Rotor, Hub and Brake Caliper are analysed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analysed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analysed from their characteristics plot. Vibrational Behaviour, Static and Structural Behaviour, Thermal Behaviour, Performance Efficiency, Flow Behaviour of Ventilated Disc Brake Rotor can be easily depicted with respect to Bump and Droop during Acceleration, High Climb and manoeuvrability.
Technical Paper

Rust is not a Must. Improvement of Discs Corrosion Resistance by Tuning of Cast Iron Alloying Elements and Microstructure.

2020-10-05
2020-01-1624
In the last decade, the increasing electrification of road transports has stimulated the look for new braking systems with a high corrosion resistance. This resulted in a fervent research activity behind the development of disc brakes with a reduced corrodibility under demanding tribocorrosive environments. Despite of this, a significant reduction of the cast iron disc corrodibility can be achieved not only by developing variously coated rotors, but also by modulating the intrinsic corrodibility of iron. This can be done by and ad-hoc refining of the cast iron: a) alloying elements concentration; b) microstructure; and c) carbon content and morphology. At this regard, in this contribution, the corrosion properties of a representative ensemble of cast iron specimens are reviewed.
Technical Paper

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon being the most common alloying element. Despite the excellent castability and machinability of AlSix alloys, anodization is often necessary in order to provide to AlSix components the required corrosion resistance or when the braking system has to withstand to severe chloride-rich environments [1]. Even if the anodization process is known for almost 100 years, a continuous research and process optimization can lead to the development of anodic layers with enhanced morphological and electrochemical properties, which enable a prolonged resistance of calipers under endurance corrosive tests (e.g. >1000hours Neutral Spray Tests).
Technical Paper

Role of Attapulgite on Altering the Performance Properties of Cu-Free Brake-Pads

2020-10-05
2020-01-1601
Abstract: Attapulgite, a unique clay mineral is a crystalloid hydrous magnesium-aluminium silicate, composed of silicon oxide, aluminium oxide, magnesium oxide, iron oxide etc. having formula Mg5Si8O20(HO)2(OH2)4•4H2O. Its structure is somewhat between laminated and chain structure having very high surface area and porosity. Its magnesium silicate structure resembles a brick wall with every second brick missing. This leaves elongated porous channels that are highly absorbent. Its fibers were proven to be excellent substitute for asbestos in brake-pads. Hardly anything in details is reported on its exact role in controlling tribo-properties of friction materials (FMs) especially Cu-free FMs. Hence, in this work a series of brake-pads with five types was formulated and developed with increasing amount of attapulgite (0, 5, 10 and 15 wt. %) by compensating with inert barite particles in Cu-free FMs.
Technical Paper

Wear Evaluation of Niobium-Added Cast Iron for Brake Disc and Drum Applications

2020-10-05
2020-01-1627
Grey cast iron alloys for brake drum and brake disc applications are being developed with niobium additions and a range of equivalent carbon for commercial, passenger vehicle, and performance applications. The benefit of niobium in cast iron is based on the contribution of strength by matrix refinement for a given carbon equivalence that may permit the direct improvement of wear improvement or allow for an increase in carbon equivalence for a given strength. Proper carbon equivalency and pearlite stabilization contribute to an improved pearlite structure with an optimized distribution of graphite. These structures, when refined with niobium, demonstrate increased service life and reduced wear relative to their niobium-free equivalents as measured by lab dynamometer testing and by on-vehicle testing in passenger bus fleets.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Resabtors - Advanced Multi-Material Muffler Designs for Clean Air Applications

2020-09-30
2020-01-1554
The development and production of resonators on the charged air side of combustion engines require profound base of knowledge in designing, simulating and the production of such parts in different materials (aluminum, copper, stainless steel and technical plastic). As combustion engines are under constant discussion, this existing knowledge base should be used for other applications within and outside the automotive industry. Very quickly it became apparent that new challenges often require completely new solutions, designs and materials to meet the requirements of flow noise reducing parts. For example, for clean air applications mufflers based on “special treated foams” and “meta-materials” can be introduced. These materials offer new potentials for tuning of the frequency range and allow improved broad banded flow noise attenuation. Such parts are named “Resabtors” in order to take respect of the different flow noise attenuation principles resonation and absorbing.
X