Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Diesel-Water Emulsion and Water Fumigation in a Small Bore Diesel Engine

2020-10-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The water to diesel ratio was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. A stable water-diesel emulsion was prepared using a combination of equal proportions (1:1 by volume) of Span 80 and Tween 80. The mixture of Span 80 in diesel and Tween 80 in water was homogenized using an IKA Ultra Turrax homogenizer with tip stator diameter 18mm at 5000 rpm for 2 minutes. The water-in-diesel emulsions thus formulated were kinetically stable and appeared translucent. No phase separation was observed on storage for approximately 105 days.
Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Real-Time Dynamic Brake Assessment for Heavy Commercial Vehicle Safety

2020-10-05
2020-01-1646
This report summarizes initial results and findings of a model developed to determine the braking performance of commercial motor vehicles in motion regardless of brake type or gross weight. Real-world data collected by Oak Ridge National Laboratory for a U.S. Department of Energy study was used to validate the model. Expanding on previous proof-of-concept research showing the linear relationship of brake application pressure and deceleration additional parameters such as elevation were added to the model. Outputs from the model consist of coefficients calculated for every constant pressure braking event from a vehicle that can be used to calculate a deceleration and thus compute a stopping distance for a given scenario. Using brake application pressure profiles derived from the dataset, stopping distances for light and heavy loads of the same vehicle were compared for various speed and road grades.
Technical Paper

Numerical Characterization of Brake System Cooling, Aerodynamic, and Particle Soiling Performances under Driving Conditions

2020-10-05
2020-01-1622
Effective cooling of a heated brake system is critical for vehicle safety and reliability. While some flow devices can redirect airflow more favorably for convective cooling, such a change typically accompanies side effects, such as increased aerodynamic drag and inferior control of brake dust particles. The former is critical for fuel efficiency while the latter for vehicle’s soiling and corrosion as well as non-exhaust emissions. These competing objectives are assessed in this study based on the numerical simulations of an installed brake system under driving conditions. The thermal behavior of the brake system as well as aerodynamic impact and brake dust particle deposition on areas of interest are solved using a coupled 3D transient flow solver, PowerFLOW. Typical design considerations related to enhanced brake cooling, such as cooling duct, wheel deflector, and brake air deflector, are characterized to evaluate the thermal, aerodynamic and soiling performance targets.
Technical Paper

Enclosure-In-Chamber Setup to Achieve Near-Zero Background Concentrations for Brake Emissions Testing

2020-10-05
2020-01-1634
Measuring brake emission is still a challenging non-standardized task. Extensive research is ongoing. Updates of work in progress are presented at SAE Brake Colloquium and PMP meetings. However, open items include how to achieve lower background concentration and how to design the brake enclosure. A low background concentration is essential as brake events are short and some emit in the range of reported background levels. Hence these emissions are difficult to distinguished from the background level. Even more critical, a high background concentration can result in a wrong particle number emissions value, either overestimated, background counted as emissions, or underestimated, background level subtracted, and low emission events no longer detected and counted. However, reducing the background level to less than 100 #/cm³ appeared to be quite challenging.
Technical Paper

Optimization Of Vehicle Damping Sheets Position Based On Energy Calculation

2020-09-30
2020-01-1528
As a common means for reducing vibration and noise for automobiles, damping material is usually employed in the vehicle body, typically on the floor, the dashboard, and the top roof. With the growing demand of fuel economy, light weighting, as well as NVH comfort, the optimization of the damping pads has become a topic of increasing importance. In numerical simulation, the traditional methods generally make use of the modal strain energy of the metal sheet as the main indicator for making layout choice for the damping pads. The optimization is not performed according the vehicle’s real working condition. Furthermore, the traditional methods do not depend on the accurate properties of the damping material. In this paper, a novel optimization method based on energy analysis is presented.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
X