Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Analysis on the Effects of Passive Prechambers on a Small 2-Stroke Low-Pressure Direct Injection (LPDI) Engine

2020-10-30
2020-32-2305
Two-stroke (2S) engines still play a key role in the global internal combustion engine (ICE) market when high power density, low production costs, and limited size and weight are required. However, they suffer from low efficiency and high levels of pollutant emissions, both linked to the short circuit of fuel and lubricating oil. Low- and high-pressure direct injection systems have proved to be effective in the reduction of fuel short circuiting, thus decreasing unburnt hydrocarbons and improving engine efficiency. However, the narrow time window available for fuel to be injected and homogenized with air, limited to few crank-angles, leads to insufficiently homogenized fuel-air mixtures and, as a consequence, to incomplete combustions. The use of prechambers can be a well-suited solution to avoid these issues.
Technical Paper

Lubricating Oil Droplets from Piston Crown on Abnormal Combustion in Supercharged SI Engine

2020-10-30
2020-32-2302
In recent years, the supercharged spark ignition engine (SI engine) is spread out in the field of passenger vehicle. However, it has a problem of abnormal combustion which is called Low Speed Pre-ignition (LSPI). It is cleared gradually that the character of lubricating oil effects on LSPI behavior. The lubricating oil which has a tolerance for LSPI has been introduced already in the market nowadays. However, cause and mechanism of LSPI occurrence does not clear sufficiently. In previous conference SETC 2018, it was reported that the peculiar behavior of LSPI corresponded with behavior of lubricating oil from piston crown. This paper focuses on frequency of lubricating oil scattering from piston crown.
Technical Paper

Autoignition of a Lubricating Oil Droplet with Fuel Ingredients on Abnormal Combustion of Supercharged SI Engine

2020-10-30
2020-32-2318
The supercharged spark ignition engine (SI engine) has a problem of abnormal combustion. It is called Low Speed Pre-ignition (LSPI). The lubricating oil which has a tolerance for LSPI has been introduced already in automobile market nowadays. However, cause and mechanism of LSPI does not clear sufficiently. It has been reported that the peculiar behavior of LSPI corresponded with behavior of lubricating oil from piston crown. This paper focuses on effect of fuel ingredients on autoignition of a lubricating oil droplet about LSPI. On the ignition source point of view, it is important to clear the mechanism of a lubricating oil droplet autoignition in cylinder. This paper will be tried to clear its mechanism fundamentally by using of electric furnace which is heated an oil droplet. As a result, the activation energy E is found for quantitative evaluation of LSPI.
Technical Paper

Determination of Diffusion Capability of Oxygen Through Brake Pads From the Surface Towards the Interior

2020-10-05
2020-01-1616
The oxidation of raw materials, such as phenolic resin, in the pad during the braking depends on the temperature but also on the oxygen diffusion capability through the brake pad. Determination of oxygen diffusion is a key point in knowing how deep from the surface tribochemistry can take place. In previous work from RIMSA, it was observed that iron sulphide had been reacted below the surface of the brake pad, suggesting that tribochemistry does not only take place on the surface. The diffusion of oxygen through the pad is a drawback because it induces the matrix decomposition that contributes to intra-stop CoF instability and consequently worsens NVH. This study is focused on determining the oxygen diffusion through brake pads using oxidized iron sulphide particles as indicator parameter. Iron sulphide has a peculiar microstructure (rough microstructure) when it becomes oxide that can be recognized easily, making it a good marker.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during the braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

A Study of the Interactions Between Phenolic Resin and Metal Sulphides and their Contribution to PAD Performance and Wear

2020-10-05
2020-01-1600
In order to keep the coefficient of friction stable, some additives such as metal sulphides, are included in the brake pads formulation. Previous work from RIMSA has shown that oxidation temperature range of the metal sulphides can be one of the key properties to explain their contribution to the performance and wear of a PAD. This new work is a step forward in the interpretation of the mechanism of sulphides as chemically active additives in the brake pads. Phenolic resin is the matrix of the brake pads and starts to decompose around 300 ºC in presence of oxygen and temperature. In order to establish a connection on between sulphide oxidation and phenolic resin degradation, several studies based on heat treatment of blends of different metal sulphides (Iron sulphide, Tin sulphide and Composite sulphide) with phenolic resin have been done. Then the material evolution was studied with techniques such as TGA - DSC, XRD, IR and SEM - EDS.
Technical Paper

Evaluation of a Low-Metals, Non-Petrochemical Coke for Use in Automotive Friction Materials

2020-10-05
2020-01-1603
A study was performed to compare the performance of automotive friction elements, each manufactured with one of two different coke fillers. Coke #1 is a conventional calcined petroleum coke, and coke #2 a proprietary, calcined coke manufactured from a non-petrochemical feedstock. Subject coke materials were fully characterized, physically and chemically. Both coke materials are similar in their respective physical properties, including morphology, hardness, and crush strength. However, there is a significant difference in the trace metal content of the two materials, with coke #1 containing a higher content of sulfur, calcium, iron, nickel, and vanadium than coke #2. Nickel and vanadium are considered potential environmental hazards. Initial friction element evaluation was performed using the J661 Brake Lining Quality Test Procedure (Chase Test). Ultimately each coke material was formulated into two different automotive brake elements.
Technical Paper

Design and Simulation of Braking System for ATV

2020-10-05
2020-01-1611
Design and Simulation Analysis of Braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, Structural, Thermal, Dynamic, Computational Flow Dynamics, Vibrational & Fatigue Behaviour of Ventilated brake disc Rotor, Hub and Brake Caliper are analysed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analysed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analysed from their characteristics plot. Vibrational Behaviour, Static and Structural Behaviour, Thermal Behaviour, Performance Efficiency, Flow Behaviour of Ventilated Disc Brake Rotor can be easily depicted with respect to Bump and Droop during Acceleration, High Climb and manoeuvrability.
X