Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fluids for Aerospace Hydraulic Systems

2022-05-13
This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Technical Paper

Multiphysics approach for thermal design of liquid cooled EV battery pack

2022-03-29
2022-01-0209
Thermal management of battery packs is essential to keep the cell temperatures within safe operating limits at all times and, hence, ensure the healthy functioning of an EV. The life cycle of a cell is largely influenced by its operating temperature, maintaining the cell temperature in its optimum range improves its longevity by decreasing its capacity fade rate and in turn extending the life of an EV. Liquid cooling techniques have proven to be cost-effective compared to other techniques such as air cooling, PCM-based in terms of performance in the given volumetric constraints. The battery thermal management solution being presented employs a tabbed type liquid cooling technology that achieves low-temperature differentials for an in-house designed battery pack consisting of 320 LFP cells (Size: 32700) with a total voltage and capacity of 27V and 240Ah respectively. Thermal design of the battery pack considers maximum dissipation when continuously operating at 1C-rate conditions.
Technical Paper

Demonstrating UVC LED Inside Automobile HVAC Chambers for Clean Cabin Air and Airborne Transmission Risk Reduction

2022-03-29
2022-01-0197
The COVID-19 pandemic affected mobility in many ways- from changing business models of moving passenger to delivering packages and food, developing cleaning protocols for interiors and increasing the awareness of consumers to the hidden dangers of pathogens and viruses in an enclosed space. A trend towards healthy cars is believed to remain after the current pandemic and has led to the emergence of new safety features, from CO2 gas sensors, to antimicrobial fabrics, and enhanced air purifiers. While air purifiers trap contaminants using cartridge filters, they are not particularly efficient at removing viral particles and create large pressure drops, which must be compensated with larger fans, increasing noise and power consumption, both of which are not optimal for vehicle HVAC systems. However, air purifiers act as a pressure head, which limits their utility. UVC was not previously an option because mercury lamps pose their own electrical and chemical hazards.
Technical Paper

Use of Thermally Conductive Electrically Insulative (TCEI) Materials in E-motor Slot Liner Applications

2022-03-29
2022-01-0198
Slot liners are commonly used in electric motors to electrically insulate the motor windings from the laminated core. However, thermal conductivity of materials commonly used as slot liners is very low compared to other components in the motor thus creating a barrier for heat transfer. This thermal barrier affects overall motor performance and efficiency. Also, slot liners typically lack intimate contact with the laminated core resulting in air gaps which further increase thermal resistance in the system. Slot liners are traditionally made from high temperature films/papers that are cut and slid into slots of motors. The proposed work looks at developing an injection moldable slot liner to minimize air gaps. Additionally, use of TECI materials further lowers thermal resistance. A thermal finite element model has been developed to evaluate effects of slot liner thermal properties and air gaps on temperature distribution within the motor.
Technical Paper

Influences of Martensite Morphology and Precipitation on Bendability in Press-Hardened Steels

2022-03-29
2022-01-0238
Performance evaluation of martensitic press-hardened steels by VDA 238-100 three-point bend testing has become commonplace. Significant influences on bending performance exist from both surface considerations related to both decarburization and substrate-coating interaction and base martensitic steel considerations such as structural heterogeneity, i.e., banding, prior austenite grain size, titanium nitride (TiN) dispersion, mobile hydrogen, and the extent of martensite tempering as result auto-tempering upon quenching or paint baking during vehicle manufacturing. Deconvolution of such effects is challenging in practice, but it is increasingly accepted that surface considerations play an outsized role in bending performance. For specified surface conditions, however, the base steel microstructure can greatly influence bending performance and associated crash ductility to meet safety and mass-efficiency targets.
Technical Paper

Development of Vehicle Thermal Management Model for Improving the Energy Efficiency of Electric Vehicle

2022-03-29
2022-01-0201
Recently, automobile manufacturers are interested in the development of battery electric vehicle (BEV) having a longer mileage to satisfy customer needs. The BEV with high efficiency depends on the temperature of the electric components. Hence it is important to study the effect of the cooling system in electric vehicle in order to optimize efficiency and performance. In this study, we present a 1-D vehicle thermal management (VTM) simulation model. The individual vehicle subsystems were modeled including cooling, power electric (PE), mechanical, and control components. Each component was integrated into a single VTM model and it would be used to calculate energy transfer among electrical, thermal, and mechanical energy. As a result, this simulation model predicts a plenty of information including the state of each component such as temperature, energy consumption, and operating point about electric vehicle depending on driving cycles and environmental conditions.
Technical Paper

True Fracture Strain Measurement and Derivation for GISSMO Calibration

2022-03-29
2022-01-0237
The importance of true fracture strain was initially highlighted in the context of local versus global formability considerations used in material selection among advanced high strength steels (AHSSs) of similar tensile strength. Inspired by the relative studies, a precedent work had compared the discrepant fracture strain results from the digital image correlation (DIC) and the optical measurement techniques. This work further investigated various factors, such as the measurement techniques, the effective strain formula, and the fracture surface morphology, which could affect the true fracture strain measurement and derivation results, and subsequently the calibration of the Generalized Incremental Stress State dependent damage Model (GISSMO) used in crash simulations. In the meantime, explanations and discussions on the possible mechanisms behind these effects were also presented.
Technical Paper

Forming Characteristics of Very Low Carbon High strength Dual Phase Steels Produced through a Flex Mill Continuous Galvanizing Line

2022-03-29
2022-01-0239
A low carbon, lean alloyed chemistry was selected for the development of high strength dual phase (DP) steels with enhanced global and local formability. Optimized best process conditions including clean steel practices, choice of suitable casting powder, hot rolling and continuous anneal set points resulted in excellent mechanical properties and formability characteristics of DP steels. The enhanced balance of strength and formability is attributed to the optimization of the microstructure through refinement, uniformity and balancing microconstituents mechanical response and guaranteeing outstanding internal cleanliness. In this contribution, production strategy and formability characterization of DP steels with tensile strengths of 780 MPa and above relevant to automotive body structure applications will be discussed.
X