Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Behavior of Fuel Droplets on a Heated Substrate

2021-10-15
2021-01-5099
The processes of surface wetting and film evaporation play a major role in any application using liquid fuels. Since the behavior of entire multi-liquid films is influenced by many simultaneously occurring physical processes, exact modeling is not yet possible. In order to reduce the complexity and to determine the basic effects in the spreading and evaporation of multi-component films, this study was carried out by placing single 5 μl droplets on a heated metal surface. Various alkanes, ethanol, and mixtures, as well as real gasoline, were studied at surface temperatures between 69°C and 140°C. To describe the processes qualitatively and determine the time-dependent wetted surface area, the droplets were visualized using cameras. With the results, it was possible to determine the course of the wetted surface over time and to compare different liquids under varying surface temperatures.
Journal Article

A Review and Perspective on Particulate Matter Indices Linking Fuel Composition to Particulate Emissions from Gasoline Engines

2021-10-08
Abstract Particulate matter (PM) indices—those linking PM emissions from gasoline engines to the composition and properties of the fuel—have been a topic of significant study over the last decade. It has long been known that fuel composition has a significant impact on particulate emissions from gasoline engines. Since gasoline direct injection (GDI) engines have become the market-leading technology, this has become more significant because the evaporative behavior of fuel increases in importance. Several PM indices have been developed to provide metrics describing this behavior and correlating PM emissions. In this article, 16 different PM indices are identified and collected—to the authors’ knowledge, all of the indices are available at the time of writing. The indices are reviewed and discussed in the context of the information required to calculate them, as well as their utility.
Technical Paper

Investigation of Squeak and Rattle Problems in Vehicle Components by Using Simulation & Doe Techniques

2021-09-22
2021-26-0293
The automotive and related industries are concentrating their efforts on improving comfort by lowering engine, wind, and road noise and vibrations. However, as background noise levels decrease, the squeaks and rattles (S & R) generated by the vehicle's many components become more noticeable and distracting. As a result of the absence of a dominant noise source from a traditional petrol/diesel car, (S & R) noise becomes more dominant than other types of noise in electric vehicles. In this paper, we propose a novel simulation technique for developing a systematic approach to identifying and solving (S & R) problems in vehicle components/sub-assemblies during the primary stage of product development cycle, thus reducing the overall product development time. This paper will present a novel approach to comprehending various methods and Design of Experiments (DOE) techniques used to determine the root cause of (S&R) problems and to solve those using numerical methods.
Technical Paper

Engine Friction Optimization Approach using Multibody Simulations

2021-09-22
2021-26-0409
From April 2020 BS 6 phase 1 legislation has come into place in India. Further in the coming years from 2022 CAFÉ norms will be implemented targeting 122 g/km CO2 fleet emissions. Also, from year 2023 onwards BS 6 phase 2 emission legislation with RDE cycle will be in place. With the expensive exhaust after-treatment system needed for meeting BS 6 norms, the Diesel powertrain based vehicles cost has increased further creating even further price difference to it’s Gasoline fuel variants. Additionally, the price difference between Diesel and Gasoline fuel is always reducing. These reasons have changed the buying pattern of passenger cars in India, with vehicle powered by engine<1.5 L displacements have gradually shifted predominantly to Gasoline powertrain. The impact of this will further stress the fleet CO2 emissions for manufacturers.
Technical Paper

A New Catalyst Technology to Overcome Diffusion and Transport Limitations

2021-09-22
2021-26-0210
The purification efficiency of exhaust gas catalysts depends on several factors. One of the most important factors is the diffusivity of the exhaust gases in the catalytic coating layer, especially at moderate to high temperature and space velocity conditions. Porous silica, γ-alumina, zirconia, carbons and many other porous crystalline materials that are commonly used as catalysts and catalyst supports are traversed by a labyrinth of tortuous micro and mesopores. If the connectivity is very low, the labyrinth of pores becomes more difficult to penetrate, increasing the overall “tortuosity” and slowing down the transportation of gas molecules within catalyst layers. A new approach to overcome these diffusion and transport limitations in an exhaust gas catalyst is to create a continuous interconnected network of mesopores and macropores via increase in void fractions within the washcoat components and layers.
Technical Paper

Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021-09-22
2021-26-0356
Ethanol fuel blends with gasoline for spark ignition (SI) internal combustion engines are widely used on account of their advantages in terms of fuel economy and emissions reduction potential. The focus of this paper is to study the effects of these blends on combustion characteristics such as in-cylinder pressure profiles, gas-phase emissions (e.g., unburned hydrocarbons, NOx) and particulates (e.g., particulate matter and particle number) using both measurement campaigns and digital engineering workflows. Nineteen load-speed operating points in a 1L 3-cylinder GDI SI engine were measured and modelled. The measurements for in-cylinder pressure and emissions were repeated at each operating point for three types of fuel: gasoline (E0, 0% by volume of ethanol blend), E10 (10 % by volume of ethanol blend) and E20 (20% by volume of ethanol blend).
Technical Paper

Effect of Ethanol-Gasoline Blends on Adsorption/Desorption Process in SI Engine

2021-09-21
2021-01-1184
Ethanol is regarded as a potential alternative fuel for combustion engine as it provides lower exhaust emissions, higher efficiency and higher octane rating. However, the solubility of ethanol in oil can effect lubricant quality. The impact of ethanol-blend gasoline on lubricants is a matter of concern that must be addressed. With this in mind, the current study investigates the effect of blending ethanol with gasoline on the oil layer adsorption/desorption mechanism. The blends used for the study are E0, E5, E10, and E15. The study is carried out with the help of a mathematical model that predicts the fuel adsorbed/desorbed in the oil layer of an engine. The mathematical model predictions are compared to experimental results obtained on a single-cylinder gasoline engine. Fuel adsorbed in the oil layer ranges from 0.46% for E0 fuel to 0.35% for E15 fuel. Similarly, the desorbed fuel ranges from 0.45% to 0.29% as the ethanol fraction increases from 0% to 15%.
Technical Paper

Comparison of Olefin Copolymers and Comb Polymers in Engine Oil Formulations Tested for Fuel Efficiency Retention and CO2 Emissions Under Advanced Emission Standards

2021-09-21
2021-01-1211
This study presents the impact of two engine oil additives on fuel efficiency and CO2 emissions. Formulations containing either Olefin Copolymer (OCP) or Comb polymer (Comb) were compared in tests for fuel efficiency retention, fine particle emissions, and ash accumulation in the gasoline particulate filter. The Comb formulations showed higher fuel efficiency throughout the testing, retaining this efficiency after three distinct engine aging test cycles. No significant differences between formulations were observed in oil consumption, ash accumulation, and filtration efficiency.
Technical Paper

Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Applications

2021-09-21
2021-01-1210
The research on reducing emissions from automotive engines through modifications in the combustion mode and the fuel type is gaining momentum because of the increasing contribution to global warming by the transportation sector. The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are susceptible to fuel molecular composition and properties. Ignition timing in LTC strategies is primarily controlled by fuel composition and associated chemical kinetics. Thus, tailoring of fuel properties is required to address the limitations of LTC in terms of lack of control on ignition timing and narrow engine operating load range. Utilizing fuel blends and additives such as nanoparticles is a promising approach to achieving targeted fuel property. An improved understanding of fundamental processes, including fuel evaporation, is required due to its role in fuel-air mixing and emission formation in LTC.
Technical Paper

Investigations into the Effects of Spark Plug Location on Knock Initiation by using Multiple Pressure Transducers

2021-09-21
2021-01-1159
Despite a long history of development, modern spark-ignition (SI) engines are still restricted in obtaining higher thermal efficiency and better performance by knock. Knocking combustion is an abnormal combustion phenomenon caused by the autoignition of unburned air-fuel mixture ahead of the propagating flame front. This work describes investigations into the significance of spark plug location (with respect to inlet and exhaust valve position) on the knock formation mechanism. To facilitate the investigation, four spark plugs were installed in a specialized liner at four equispaced distinct locations to propagate flames from those locations, which provoked a distinct flame propagation from each and thus individual autoignition profiles. Six pressure transducers were arranged to precisely record the pressure oscillations, knock intensities, and combustion characteristics.
Technical Paper

Performance Comparison of LPG and Gasoline in an Engine Configured for EGR-Loop Catalytic Reforming

2021-09-21
2021-01-1158
In prior work, the EGR loop catalytic reforming strategy developed by ORNL has been shown to provide a relative brake engine efficiency increase of more than 6% by minimizing the thermodynamic expense of the reforming processes, and in some cases achieving thermochemical recuperation (TCR), a form of waste heat recovery where waste heat is converted to usable chemical energy. In doing so, the EGR dilution limit was extended beyond 35% under stoichiometric conditions. In this investigation, a Microlith®-based metal-supported reforming catalyst (developed by Precision Combustion, Inc. (PCI)) was used to reform the parent fuel in a thermodynamically efficient manner into products rich in H2 and CO. We were able to expand the speed and load ranges relative to previous investigations: from 1,500 to 2,500 rpm, and from 2 to 14 bar break mean effective pressure (BMEP).
Technical Paper

Fuel Effects on Advanced Compression Ignition Load Limits

2021-09-21
2021-01-1172
In order to maximize the efficiency of light-duty gasoline engines, the Co-Optimization of Fuels and Engines (Co-Optima) initiative from the U.S. Department of Energy is investigating multi-mode combustion strategies. Multi-mode combustion can be describe as using conventional spark-ignited combustion at high loads, and at the part-load operating conditions, various advanced compression ignition (ACI) strategies are being investigated to increase efficiency. Of particular interest to the Co-Optima initiative is the extent to which optimal fuel properties and compositions can enable higher efficiency ACI combustion over larger portions of the operating map. Extending the speed-load range of these ACI modes can enable greater part-load efficiency improvements for multi-mode combustion strategies.
Technical Paper

Auto-ignition and Anti-Knock Evaluation of Dicyclopentadiene-PRF and TPRF Blends

2021-09-21
2021-01-1160
The increasing demand for high-octane fuels is pushing the combustion research towards investigating new potential fuels and octane boosters. In addition to their high-octane, those additives should be environmentally friendly. In this study, the anti-knock properties of Dicyclopentadiene (DCPD) as an additive to primary reference fuels (PRF) and toluene primary reference fuels (TPRF) have been investigated. The Research octane number (RON) and Motor octane number (MON) were measured using Cooperative Fuels Research (CFR) engine for four different fuel blends; PRF 60 + 10% DCPD, PRF 60 + 20% DCPD, PRF 70 + 10% DCPD and TPRF 70 + 10% DCPD. In addition, homogenous charge compression ignition (HCCI) was also performed using the CFR engine to show the effect of DCPD on suppressing low temperature chemistry of reference fuels.
Technical Paper

Fuel Stratification Effects on Gasoline Compression Ignition with a Regular-Grade Gasoline on a Single-Cylinder Medium-Duty Diesel Engine at Low Load

2021-09-21
2021-01-1173
Prior research studies have investigated a wide variety of gasoline compression ignition (GCI) injection strategies and the resulting fuel stratification levels to maintain control over the combustion phasing, duration, and heat release rate. Previous GCI research at the US Department of Energy’s Oak Ridge National Laboratory has shown that for a combustion mode with a low degree of fuel stratification, called “partial fuel stratification” (PFS), gasoline range fuels with anti-knock index values in the range of regular-grade gasoline (~87 anti-knock index or higher) provides very little controllability over the timing of combustion without significant boost pressures. On the contrary, heavy fuel stratification (HFS) provides control over combustion phasing but has challenges achieving low temperature combustion operation, which has the benefits of low NOX and soot emissions, because of the air handling burdens associated with the required high exhaust gas recirculation rates.
Technical Paper

Impact of Drag Reducing Agents on Gasoline Engine Deposits

2021-09-21
2021-01-1185
Drag reducing agents (DRAs) are extensively used to increase the capacity of pipelines to transport crude oils and finished products. The amount of DRA that can be used in gasoline is limited by the tendency of the high molecular weight DRAs to form engine deposits. The use of deposit control additives (DCAs) could help to mitigate this effect, enabling increased DRA treatment rates and improved pipeline capacity. A study has been undertaken to investigate the engine test response of these additives, and has suggested that higher DRA treat rates may be possible when accompanied by a deposit control additive to address increased intake valve deposits. Conversely, the effect on combustion chamber deposits is not clear and further studies would be required. Other engine related aspects such as intake valve deposit stick have also been investigated and under the conditions tested do not appear to be adversely affected by either the DRA or the deposit control additive.
Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Technical Paper

Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine

2021-09-21
2021-01-1204
On the way to a climate-neutral mobility, synthetic fuels with their potential of CO2-neutral production are currently in the focus of internal combustion research. In this study, the C1-fuels methanol (MeOH), dimethyl carbonate (DMC), and methyl formate (MeFo) are tested as pure fuel mixtures and as blend components for gasoline. The study was performed on a single-cylinder engine in two configurations, thermodynamic and optical. As pure C1-fuels, the previously investigated DMC/MeFo mixture is compared with a mixture of MeOH/MeFo. DMC is replaced by MeOH because of its benefits regarding laminar flame speed, ignition limits and production costs. MeOH/MeFo offers favorable particle number (PN) emissions at a cooling water temperature of 40 °C and in high load operating points. However, a slight increase of NOx emissions related to DMC/MeFo was observed. Both mixtures show no sensitivity in PN emissions for rich combustions. This was also verified with help of the optical engine.
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
Technical Paper

Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain

2021-09-21
2021-01-1229
To minimize the impact of global warming worldwide, net greenhouse-gas (GHG) emissions have to be reduced. The transportation sector is one main contributor to overall greenhouse gas emissions due to the fact that most of the current propulsion systems rely on fossil fuels. The gasoline engine powertrain is the most used system for passenger vehicles in the EU and worldwide. Besides emitting GHG, gasoline driven cars emit harmful pollutants, which can cause health issues for humans. Hybrid powertrains provide an available short-term solution to reduce fuel consumption and thus overall emissions. Therefore, an overview of the currently available technology and methodology of hybrid cars is provided in this paper as well as an overview of the performance of current HEV cars in real world testing. From the testing, it can be concluded that despite reducing harmful emissions, hybrid vehicles still emit pollutants and GHG when fueled with conventional gasoline.
X