Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Validation of a Model-based Water Injection Combustion Control System for On-board Application

2019-08-15
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the SA required to reach a combustion phase target, considering injected water mass effects. The model has been expanded to directly consider air-to-fuel ratio variation effects on combustion phasing, and the same controller structure could integrate other variables that influence 50 percent of Mass Fraction Burned angular position (MFB50), such as EGR.
Technical Paper

CFD analysis and knock prediction within the crevices of piston to liner fireland of a high performance I.C.E.

2019-08-15
2019-24-0006
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: it is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. “Standard” knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-08-15
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives the control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed by several phases and steps, and the first part of such process is typically spent to define and validate the logic of the strategy. During this phase a light engine simulator is particularly useful, since it allows producing robust combustion synthetic data with a low calibration and computational effort. In the first part of this paper the description of a control-oriented analytic engine simulator (ANESIM) is carried out.
Technical Paper

On the HCCI octane boosting effects of γ-Valerolactone

2019-08-15
2019-24-0026
Transportation sector is almost entirely powered by internal combustion engines (ICEs) burning petroleum-based liquid fuels. This makes the transportation sector the main culprit of global warming due to the large quantity of CO2 emission from burning these petroleum-based fuels. Over the last few decades, there are growing concerns over global warming and diminishing petroleum reserves. Such concerns have led to concentrated efforts directed at a paradigm shift from conventional fuels to renewable alternatives which can promote cleaner combustion. Therefore, future research directions should orient towards exploring new fuels suitable for future ICEs to achieve better engine efficiency and significantly less harmful emissions. One way to achieve these objectives is to focus on improving the combustion technology by developing new fuel-engine systems. Consequently, scientists and engineers are showing growing interest towards non-petroleum-based fuels coming from renewable resources.
Technical Paper

Study of fuel octane sensitivity effects on gasoline partially premixed combustion using optical diagnostics

2019-08-15
2019-24-0025
Partially premixed combustion (PPC) is a low-temperature combustion (LTC) concept that could deliver higher engine efficiency, as well as lower NOx and soot emissions. Gasoline-like fuels are beneficial for air/fuel mixing process under PPC mode because they have superior auto-ignition resistance to prolong ignition delay time. In current experiments, the high octane number gasoline fuel E10 (US market used gasoline, RON=91) and low octane number GCI blend fuel (RON=77) were tested respectively in a full-transparent AVL single cylinder optical compression ignition (CI) engine. Aiming at investigating the fuel sensitivity on engine performances under different combustion modes as well as soot particle emissions, the engine operating parameters and emission data were analyzed from CI to HCCI (homogeneous charge compression ignition) via PPC (partially premixed combustion) by changing fuel injection timing.
Technical Paper

Evaluation of water and EGR effects on combustion characteristics of GDI engines using a chemical kinetics approach

2019-08-15
2019-24-0019
The modern spark ignition engines, due to the introduced strategies for limiting the consumption without reducing the power, are sensitive to both the detonation and the increase of the inlet turbine temperature. In order to reduce the risk of detonation, the use of dilution with the products of combustion (EGR) is an established practice that has recently was improved with the use of water vapour obtained via direct or indirect injection. The application and optimization of these strategies cannot ignore the knowledge of physical quantities characterizing the combustion such as the laminar flame speed and the ignition delay, both are an intrinsic property of the fuel and are function of the mixture composition (mixture fraction and dilution) and of its thermodynamic conditions. The experimental measurements of the laminar flame speed and the ignition delay available in literature, rarely report the effects of dilution by EGR or water vapor.
Technical Paper

Morphological characterisation of gasoline soot-in-oil: development of semi-automated 2D-TEM and comparison with novel high-throughput 3D-TEM

2019-08-15
2019-24-0042
Morphology of soot nanoparticles is characteristically complex and 3-dimensional, and plays a defining role in soot-related phenomena. Morphological characterisation of soot is essential to understand the extent of such effects, including harm to human health, and develop strategies to mitigate them. Use of 2D-TEM for characterisation is associated with numerous and significant sources of error and uncertainty related to a 2D-3D information gap. Volume reconstruction by 3D-TEM avoids many of these sources of error, and has been shown in simulation studies to be highly accurate. However, the technique has traditionally been too slow to permit study of enough individual structures to satisfactorily characterise a bulk soot-sample. Similarly, the prevalence of manual image processing in 2D-TEM studies of soot can limit characterisations to as few as 50 individual particles per sample.
Technical Paper

Biogenous Ethanol: CO2 Savings and Operation in a Dual-Fuel Designed Diesel Engine

2019-08-15
2019-24-0040
The usage of ethanol and two different mixtures of ethanol and gasoline (E85 and E65) was investigated on a modified diesel engine designed to work in a dual-fuel combustion mode with intake manifold alcohol injection. The maximum ratio of alcohol to diesel fuel was limited by irregular combustion phenomena like degrading combustion quality and poor process controllability at low load and knock as well as auto-ignition at high load. With rising alcohol amount, a significant reduction of soot mass and particle number was observed. At some testing points, substituting diesel with ethanol, E65 or E85 led to a reduction of NOx emissions; however, the real benefit concerning the nitrogen oxides was introduced by the mitigation of the soot-NOx trade-off. With regard to the engine efficiency aspect, the results show bidirectional behaviour: at low load points engine efficiency degrades, whereas the process becomes by up to 6 % (rel.) more effective at higher engine loads.
Technical Paper

Gasoline Spray_Models_Calibration_Under_Diesel_Engine_Like_Conditions

2019-08-15
2019-24-0032
Atomization of liquid fuel jets is critical to the performance of Internal Combustion (IC) engine, as it plays a key role in affecting mixture formation, combustion efficiency and soot emissions. In the Gasoline Compression Ignition (GCI) engine investigation, the experimental measurements on the gasoline injection into diesel engine like condition, shows the difficulty in matching the liquid penetration length when the diesel spray model is used. Additional tests performed at lower ambient densities, seen in early injection, revealed a lot of information on liquid jet dynamics behavior. It requires a lot of model calibration effort in matching the measured liquid and vapor penetration length under different ambient pressure conditions. It is found that using droplet Sauter Mean Diameter distribution model shows better match with experiment at low density condition, whereas the KH-ACT breakup model correlates well with measurement at high density condition.
Technical Paper

Semi-volatile Organic Compounds From a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-08-15
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a significant change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the entire exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for unregulated emissions.
Technical Paper

Validation of Using a Steady-State Friction Model for Determining CO2 Emissions in Transient Driving Cycles

2019-08-15
2019-24-0054
MAHLE is conducting extensive parameter studies regarding friction savings on the piston group of fired gasoline and diesel engines to further increase the efficiency of the internal combustion engine. For each tested piston variant, steady-state fired friction measurements are taken across the entire operating range of the engine using the indication method. Based on these measurements, an empirical model is created which describes the Friction Mean Effective Pressure (FMEP) depending on engine speed, engine load and coolant and oil temperature. The friction map is then used in a drive cycle simulation in order to determine fuel consumption and CO2 emissions. A drive cycle corresponds to transient conditions both as a result of the changes in operating point and the engine warm-up. The current legislative drive cycles aim to better reflect real-world driving conditions and thus contain frequent and steep transient events.
Technical Paper

Imaging and vibro-acoustic diagnostic techniques comparison for a GDI fuel injector

2019-08-15
2019-24-0058
This work presents the results of an experimental investigation on a GDI injector, in order to analyze fuel injection process and atomization phenomenon, correlating imaging and vibro-acoustic diagnostic techniques. A single-hole, axially-disposed, 0.200 mm diameter GDI injector was used to spray commercial gasoline in a test chamber at room temperature and atmospheric backpressure. The explored injection pressures were ranged from 5.0 to 20.0 MPa. Cycle-resolved acquisitions of the spray evolution were acquired by a high-speed camera. Contemporarily, the vibro-acoustic response of the injector was evaluated. More in detail, noise data acquired by a microphone sensor were analyzed for characterizing the acoustic emission of the injection, while a spherical loudspeaker was used to excite the spray injection at a proper distance detecting possible fuel spray resonance phenomena.
Technical Paper

Quantification and Analyses of Knock in Gasoline Engines

2019-08-15
2019-24-0089
The continuously increasing demand for improved fuel efficiency, low-emissions and high performance in gasoline engines has led to down-sizing and down-speeding. This promising and broadly applied concept, which necessitates ever higher Break Mean Effective Pressure (BMEP), is impeded at high loads by knock, stochastic Low Speed Pre-ignition (LSPI), and mega-knock. Significant research has been conducted in recent years in the field of abnormal combustion phenomena in gasoline engines and the impacts of potential mitigation concepts by using various simulation tools. In the present study, a knock analysis methodology has been developed to investigate knock in Gasoline Engines. The strategy employs multiple techniques to quantify knock tendency and severity as well as identify outlier cycles for frequency analysis.
Technical Paper

Sensitivity Analysis of the Combustion Parameters in a Stratified HCCI Engine with Regard to Performance and Emission

2019-08-15
2019-24-0114
Homogeneous charge compression ignition (HCCI) is a promised solution to environmental and fuel economy concerns for IC engines. Engine application for HCCI engine depends on an array of parameters such as fuel type, mixture composition, intake condition and engine specification, meaning that controlling an HCCI engine can only be done through the adjustment of these parameters. In this numerical study which is driven from an experimental work, thermal and charge stratification is used to control HCCI combustion. The effect of intake temperature, compression ratio, intake pressure, EGR, reformer gas (CO-H2 mixture) and glow plug temperature on engine performance and emission was investigated using a 3D model on AVL-FIRE parallel with 1D model on GT-Power software. Then AHP model as a multiple Attribute Decision making method has been used to analyze the sensitivity of these parameters on performance and emission.
Technical Paper

Experimental Analysis of the Influence of Water Injection Strategies on DISI Engine Particle Emissions

2019-08-15
2019-24-0101
Increasing the efficiency of modern gasoline engines (with direct injection and spark-ignition - DISI) requires innovative approaches. The reduction of the engine displacement, accompanied by an increase of the mean pressure, is limited by the tendency of increasing combustion anomalies. Conventional methods for knock mitigation, on the contrary, have a negative effect on consumption and efficiency. A promising technology to solve these conflicting objectives is the injection of water. Both the indirect and the direct water injection achieve a significant reduction in the load temperature. The fuel enrichment can be reduced, whereby the operating range of the exhaust aftertreatment can be extended. In addition, water injection paves the way for an increase in the geometric compression ratio, which leads to an efficiency advantage even at part load.
Technical Paper

Fuel-Lubricant Interactions on Stochastic Pre-Ignition Tendency

2019-08-15
2019-24-0103
This work explores the interaction of lubricant and fuel properties on stochastic pre-ignition (SPI). Findings are based statistically significant measurements of cylinder pressure to SPI tendency and magnitude. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical-chemistry effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement or fuel chemistry, lubricant detergent effects could be observed even at reduced loads.
Technical Paper

Knock and Pre-ignition limits on utilization of Ethanol in Octane–on–Demand concept

2019-08-15
2019-24-0108
Octane-on-Demand (OoD) is a viable technology for reducing global greenhouse emissions from automobiles. The concept utilizes a low-octane fuel for most operating conditions. Previous research has focused on the minimum ethanol content required for achieving a specific load at a given speed as the low-octane fuel becomes knock limited as the load increases. However, it is also widely known that ethanol has a high tendency to pre-ignite, attributed by few to its high laminar flame speed and surface ignition tendency. Moreover, ethanol has a lower calorific value, requiring a larger fuel mass to be injected to achieve similar power. A larger fuel mass increases the oil dilution by the liquid fuel, creating precursors for pre-ignition. Hence the limits on ethanol addition owing to pre-ignition also needs consideration before the technology can be implemented.
Technical Paper

Development of Knock Prediction Model for a Spark-Ignition Engine with Gasoline-Ethanol-nButanol Blend Fuel by Using Rapid Compression Machine

2019-08-15
2019-24-0125
As an alternative fuel for spark-ignition (SI) engine, bio-derived alcohols have been used in several countries, which originate from various renewable resources. There have been numerous studies on the knocking characteristics of gasoline-ethanol blend fuel, however, less focus was on the ternary mixture of gasoline-ethanol-nbutanol (GEnB) blend fuel, which is being considered as an alternative fuel in South Korea and superior to gasoline-ethanol blend fuel due to its higher heating value for the same alcohol volume fraction. In this study, we developed a knocking prediction model in SI engine with GEnB blend fuel to understand the potential improvement of engine performance with the introduction of GEnB blend fuel. First, the ignition delay of the stoichiometric mixture of GEnB blend fuel and air was measured on 10–30 bar of pressure and 714–833 K of temperature by using rapid compression machine (RCM).
Technical Paper

Exploration of Cavitation-suppressing Orifice Designs for a Heavy-duty Diesel Injector Operating with Straight-Run Gasoline

2019-08-15
2019-24-0126
The occurrence of cavitation inside injectors is generally undesirable since it can cause material erosion and result in deviations from the expected operating conditions and performance. Previous numerical work employing an injector geometry measured with x-ray diagnostics and operating with a high-volatility straight-run gasoline has shown that: (1) most of the cavitation is generally observed at low needle lifts, (2) needle motion is responsible for asymmetric structures in the internal flow as well as large pressure and velocity gradients that trigger phase transition at the orifice inlets, and (3) cavitation affects the injector discharge coefficient and distribution of injected fuel. To explore the potential for material damage within the injector orifices due to cavitation cloud collapse, the cavitation-induced erosion risk assessment (CIERA) tool has been applied for the first time to the realistic geometry of a heavy-duty injector using the CONVERGE software.
Technical Paper

Knock Mitigation by means of Coolant Control

2019-08-15
2019-24-0183
The potentiality of knock mitigation by means of the control of the coolant flow rate is investigated. As a first step, the dynamic behavior of the wall temperature in response to a sudden variation of the coolant flow rate is analyzed experimentally in a small displacement, 4-valve per cylinder SI engine, which is equipped with an electrically driven pump. Subsequently, the influence of the wall temperature on knock onset is analyzed through a zero-dimensional model and the Livengood and Wu integral. Finally, an experimental activity on the engine test bed is carried-out in order to evaluate the influence of the coolant flow rate and of the engine inlet coolant temperature on the knock phenomenon. Results show that, even though a retarded spark advance and a mixture enrichment are not avoidable in the early stage of knock onset, a cooling control can help reducing the time of use of these fuel consuming strategies in the case of prolonged high-load conditions.
X